Previous |  Up |  Next

Article

Summary:
An algorithm for the Hermite-Birkhoff interpolation is presented, which reduces the problem to the Hermite interpolation. The missing values and derivatives are expressed by some of the given values and calculated from a system of linear equations. The system itself and its right-hand sides are computed from a set of Hermite interpolation problems. The needed values and derivatives of the Hermite interpolation polynomial can be computed using the algorithm given in the Appendix.
References:
[1] I. J. Schoenberg: On Hermite-Birkhoff interpolation. J. Math. Anal. Appl. 16(1966) 538-543. DOI 10.1016/0022-247X(66)90160-0 | MR 0203307 | Zbl 0156.28702
[2] J. Fiala: Interpolation with prescribed values of derivatives instead of function values. Apl. mat. 16 (1971) 421-430. MR 0292261 | Zbl 0224.65002
[3] J. N. Lyness C. B. Moler: Van der Monde systems and numerical differentiation. Num. Math. 8 (1966) 458-464. DOI 10.1007/BF02166671 | MR 0201071
[4] G. Galimberti V. Pereyra: Solving confluent Vandermonde systems of Hermite type. Num. Math. 18 (1971) 44-60. DOI 10.1007/BF01398458 | MR 0300417
[5] S., Å. Gustafson: Rapid computation of general interpolation formulas and mechanical quadrature rules. CACM 14 (1971) 797-801. DOI 10.1145/362919.362941 | MR 0311069 | Zbl 0226.65012
[6] S., Å. Gustafson: A416: Rapid computation of interpolation formulas. CACM 14 (1971) 806-807. DOI 10.1145/362919.362951 | MR 0311070
[7] I. S. Berezin N. P. Židkov: Methods of Computations I. (Russian). M 1959.
Partner of
EuDML logo