[DG] J. Dudek E. Graczyńska:
The lattice of varieties of algebras. Bull. Acad. Polon. Sci. Sér. Sci. Math. 29 (1981), 337-340.
MR 0640325
[GKW] E. Graczyńska D. Kelly P. Winkler:
On the regular part of varieties of algebras. Algebra Universalis 23 (1986), 77-84.
DOI 10.1007/BF01190914 |
MR 0873598
[JK1] J. Ježek T. Kepka:
Ideal free CIM-groupoids and open convex sets. Springer Lecture Notes in Mathematics 1004, Universal Algebra and Lattice Theory, 1983, 166-175.
MR 0716182
[JK2] J. Ježek T. Kepka:
Medial Groupoids. Rozpravy ČSAV, Řada mat. a přír. věd. 93/2 (1983), Academia, Praha.
MR 0734873
[JK3] J. Ježek T. Kepka:
The lattice of varieties of commutative idempotent abelian distributive groupoids. Algebra Universalis 5 (1975), 225-237.
DOI 10.1007/BF02485256 |
MR 0398952
[Ku] M. Kuczma:
An introduction to the Theory of Functional Equations and Inequalities. P.W.N, Warszawa, 1985.
MR 0788497 |
Zbl 0555.39004
[Ma2] A. I. Маľсеv:
Multiplication of classes of algebraic systems. (Russian), Sibirsk. Math. Zh. 8 (1967), 346-365.
MR 0213276
[Me] I. I. Меľnіk:
Normal closures of perfect varieties of universal algebras. (Russian), Ordered sets and lattices, Izdat. Saratov. Univ., Saratov (1971), 56-65, MR 52 # 3011.
MR 0382123
[Po] F. Poyatos: Generalizacion de un teorema de J. A. Green a algebras universales. Rev. Math. Hisp.-Amer. (4)40 (1980), 193-205.
[R1] A. Romanowska:
Constructing and reconstructing of algebras. Demonstratio Math. 18 (1985), 209-230.
MR 0816030 |
Zbl 0594.08001
[RS1] A. Romanowska J. D. H. Smith:
From affine to projective geometry via convexity. Springer Lecture Notes in Mathematics 1149, Universal Algebra and Lattice Theory, 1985, 255-269.
MR 0823020
[RS2] A. Romanowska J. D. H. Smith:
Modal Theory-an Algebraic Approach to Order. Geometry and Convexity, Heldermann Verlag, Berlin, 1985.
MR 0788695
[RS3] A. Romanowska J. D. H. Smith:
On the structure of barycentric algebras. Houston J. Math.,toappear.
MR 1089027
[S1] W. W. Saliĭ:
Equationally normal varieties of semigroups. (Russian), Izv. Vyssh. Uchebn. Zaved. Mat. 84 (1969), 61-68, MR 41 # 8555.
MR 0263956
[S2] W. W. Saliĭ: A theorem on homomorphisms of strong semilattices of semigroups. (Russian), Theory of semigroups and its applications, V. V. Vagner (ed.), Izd. Saratov. Univ. 2 (1970), 69-74, MR 53 # 10959.