[1] Amerio L., Prouse G.:
Almost-periodic functions and functional equations. Van Nostrand New York 1971.
MR 0275061 |
Zbl 0215.15701
[2] Arosio A.:
Linear second order differential equations in Hilbert spaces - the Cauchy problem and asymptotic behaviour for large time. Arch. Rational Mech. AnaI. 86 (2) (1984), pp. 147-180.
DOI 10.1007/BF00275732 |
MR 0751306 |
Zbl 0563.35041
[3] Kato T.:
Locally coercive nonlinear equations, with applications to some periodic solutions. Duke Math. J. 51 (4) (1984), pp. 923-936.
MR 0771388 |
Zbl 0571.47051
[4] Kato T.:
Quasilinear equations of evolution with applications to partial differential equations. Lecture Notes in Math., Springer Berlin 1975, pp. 25 - 70.
DOI 10.1007/BFb0067080 |
MR 0407477
[5] Krejčí P.:
Hard implicit function theorem and small periodic solutions to partial differential equations. Comment. Math. Univ. Carolinae 25 (1984), pp. 519-536.
MR 0775567
[6] Lions J. L., Magenes E.: Problèmes aux limites non homogènes et applications I. Dunod Paris 1968.
[7] Matsumura A.:
Global existence and asymptotics of the second-order quasilinear hyperbolic equations with the first-order dissipation. Publ. RIMS Kyoto Univ. 13 (1977), pp. 349-379.
DOI 10.2977/prims/1195189813 |
MR 0470507
[8] Milani A.:
Time periodic smooth solutions of hyperbolic quasilinear equations with dissipation term and their approximation by parabolic equations. Ann. Mat. Pura Appl. 140 (4) (1985), pp. 331-344.
DOI 10.1007/BF01776855 |
MR 0807643
[9] Petzeltová H., Štědrý M.:
Time periodic solutions of telegraph equations in n spatial variables. Časopis Pěst. Mat. 109 (1984), pp. 60 - 73.
MR 0741209
[11] Shibata Y.:
On the global existence of classical solutions of mixed problem for some second order non-linear hyperbolic operators with dissipative term in the interior domain. Funkcialaj Ekvacioj 25 (1982), pp. 303-345.
MR 0707564
[14] Vejvoda O., al.:
Partial differential equations: Time periodic solutions. Martinus Nijhoff PubI. 1982.
Zbl 0501.35001