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During the last years, many attempts have been made to describe the global
behaviour of solutions to nonlinear partial differential equations of the hyperbolic
type. We remark in passing that the mere existence of global solutions represents
a difficult task solved in particular cases only. A characteristic feature of such
problems is that they do not generally possess globally defined smooth solutions,
no matter how smooth the data are.

It seems interesting, both mathematically and physically, to consider situations
where some dissipative mechanism is present. In this case, the dissipation can prevail
and ensure the global existence of smooth solutions provided that the data are
small and smooth (see e.g. Kato [4], Matsumura [7], Milani [8], Shibata [11], and
many others).

In the present paper, we deal with solutions u = u(x, t), x€(0, L), t € R" of the
equation

(B) Lu + Fuyy, ty, uy Uy, Uy, u,) = f(x, 1)
where Lu = u,, + du, — au,,, a, d > 0 together with the boundary conditions
(B) u(0,t) =u(L,1) =0, teR'.

To put it more exactly, the global in time solutions will be studied (i.e. the solutions
defined for all € R') on condition that, roughly speaking, the function f is small and
smooth.

Several preliminary remarks are in order. To begin with, results of this type namely
the existence of time periodic solutions to the above problem were obtained e.g.
by Rabinowitz [10], Petzeltovd-St&dry [9], or Krejéi [S]. Their approach leans on
the accelerated convergence method developed by Nash and Moser in order to cope
with the ‘‘derivative loss”, which prevents the use of classical inverse function
theorems.

In his recent work [13], Stédry succeeded in avoiding this rather complicated
technique via decomposition of a solution in the form u(x, t) = uy(x) + [ u/x, s) ds.
In such a way, the existence and even uniqueness of small time periodic solutions
can be stated.
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There is also an interesting paper of Kato [3] where a new technique is suggested
to treat the problems with the derivative loss.

A common feature of all quoted papers is that the authors prefer to work directly
on the spaces of periodic functions, which resembles slightly the methods inherent
to stationary problems. It seems interesting (and more natural) to look for global
solutions of an evolutionary problem and then, as an added benefit of the method
employed, to obtain the existence and uniqueness of bounded, almost-periodic, or
periodic solutions.

One of the major stumbling blocks in this approach is represented by the before-
mentioned derivative loss resulting from the presence of the second derivative terms
in the nonlinearity. In [12], Shibata and Tsutsumi investigated the local existence
problem for fully nonlinear wave equaticn. To avoid the use of the Nash-Moser
method, they transformed the equation to a system consisting of a quasilinear hyper-
bolic and nonlinear elliptic equation. This paper motivated my work and I am in-
debted to the authors for it.

Following [12], we set u, = v and differentiate the equation (E) with respect to
the variable . We arrive at the following system

(Sy) Lv + Fy(D2u, D'v) v, + F4(D2u, D'v) v, +
+ F4y(Du, D'v)v + Fy(DZu, D'v) v, +
+ Fy(DZu, D'v) v, + Fy(Diu, D'v)v, = f,,

(S,) —auy, + F(Du, D'v) = f — v, — dv
for xe(0, L), te R" with
(B) u(0,1) = v(0,1) = u(L, 1) = v(L, 1) = 0

for t € R" (this step will be justified in Section 3).

The system (S;), (S,), (B) is much more simple to deal with since the equation (S;)
is, in fact, quasilinear in v. Thus, a classical iteration scheme may be used to get
desirable results. Consequently, the basic strategy employed here leans on the solution
of corresponding linear problems (see Section 4).

A simple application of compactness arguments based on embedding relations
of Sobolev spaces yields then the existence of a unique (small) bounded solution
provided f is small and smooth. Obviously, this fact can be directly exploited when
the almost-periodic or periodic case is treated (Section 6, Section 7).

1. FUNCTION SPACES

To begin with, throughout the whole text the symbols ¢;, i = 1,2, ... stand for
strictly positive real constants, h;,i = 1, 2, ... are positive, continuous, nondecreasing
functions defined on [0, + o). By R" we denote the standard n-dimensional Euclidean
space.
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Let w = (g, ..., w,) be a (possible) vector function of x,t. The symbol D*w
denotes the vector

Dkw — ai+jwl
ox' ot/

I=1,...,m, i,jgo,i+jgk}

and Diw (where y = x or y = 1) is
Diw = {8_iw,
¥ ay,
Here (and always) i, j, k, | stand for nonnegative integers.
Let us continue by listing some function spaces used in what follows. We start

with the Lebesgue spaces L, = L,(0, L), pe[1, + o] of integrable functions with
associated norm | ||, determined in a standard way. For w = (wy, ..., w,,), We set

l=1,...,m,0§i$k}.

|w| = max {|w|,|I=1,...,m}.

The symbols H* = H*0, L) denote the Sobolev spaces of those functions having
derivatives up to the order k in L,. Moreover, we determine

Hg = {w|weH', w0)=wL)=0}.

Next, we make use of vector functions ranging in a Banach space B. With I an
interval of real numbers, we consider the space W(I, B) of vector functions which
derivatives up to the order k lie in the generalized Lebesgue space L,(I, B).

CX(I, B) is a Banach space containing all functions having derivatives up to the
order k continuous and bounded on I.

The reader interested in precise definitions and basic properties of before-mentioned
spaces can consult, for example, the monograph Vejvoda et al. [14].

Finally, the spaces of almost periodic functions are of interest. A continuous
function w: R! — B is said to be almost-periodic if to every ¢ > 0 there corresponds
a relatively dense set {t}, = R' such that

sup {|w(t + t) — w(t)|z|teR'} S &

for all 7 € {1},. The space of all almost-periodic functions will be denoted AP(R', B).
The above definition is taken over from [1] where the useful characterization can
be found:

Lemma 1 (Bochner’s criterion). Let w: R' — B be a continuous function. w is then
almost-periodic if. and only if, for an arbitrary real sequence {t,}>. there is
a subsequence {1,!"_, such that the sequence of functions w(+ + t;) converges
uniformly in t e R'.

For convenience, we are going to introduce the following sets. Identlfymgafunctlon
w = w(x, t) with a vector function w: t — w(-, ) € L, we set

X* = {w | each component of D*w belongs to C(R', L,)} ,
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Xt = {w]weXk, —Z—“,)GC(R‘,H(X,) for i =0,...,k — l},
tl

XKe) = {w|weX", |[D*w(t)| <& teR'}.
Similarly
Y* = {w | each component of D*w belongs to L,,(R', L,)}

s

Yk ={w|weY", ??ELOO(RI,H})) for i=0,....k — l},
tl

Yie) = {w|we Y* |D*w(t) <& forae reR'}.

To conclude with, we are going to list auxiliary statements concerning the pro-
perties of substitution (Nemyckij) operators on the aforementioned spaces.

The first statement is easy to verify seeing that H', H* are Banach algebras and
H'Q C[0, L] according to the well known embedding relations.

Lemma 2. Suppose k = 1 or k = 2, v, we Y*.
Then vw e Y* and the following estimate holds
(L) [Dow(n)] < el D*o(0)] [D* ()
for a.e. teR!.

‘Combining the preceding result together with the Taylor expansion formula we
arrive at the following conclusion.

Lemma 3. Let : U = R™ — R' be a function ® € C*U, R") where U is an open
ball centered in 0e R"™. Consider functions v = (vy,...,0,), w=(Wwg, ..., W),
both ranging in U, such that v, w;e Y*, i =1, ..., m where k = 1 or k = 2.

Then ® ov, ® o we Y* and

(1) D@ e = 0w) (0] S h=(0) [P0 — w) ()]
holds for a.e. t € R'. If, moreover, ®'(0) = 0, then
(13) D@ oo — w) (0] S 200) (1) [P — w) (1)
for a.e. t e R* where we have denoted

2(t) = max {| Do), D WD)}

2. FORMULATION OF MAIN RESULTS
The main focus of this paper is on global existence and qualitative properties of
solutions to the problem (E), (B).

Theorem 1 (bounded solutions). Let F be a smooth function defined on some open
neighbourhood of the point 0 € R®. Denoting DiF, i = 1, ...,6 the corresponding
partial derivatives we assume that

(F) F(0) = DiF(0) =0, i=1,...,6.
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Then there is ¢ > 0 such that for every f e Y3(g) there exists a function u e X
satisfying (E), (B) for all t € R'. Moreover, there is & > 0 such that the function u
is the only solution of (E), (B) belonging to Xg(9).

Remark. In accordance with the well known embedding theorems, u € X§ implies
that u is a classical bounded solution satisfying (E), (B) pointwise.

Corollary 1. (periodic solutions). Under the assumptions of Theorem 1, suppose,
in addition, that f is w-periodic with respect to t.

Then there is a unique (small) w-periodic solution to the problem (E), (B).

Theorem 2. (almost-periodic solutions). Let all assumptions made in Theorem 1
be satisfied. Suppose, moreover,
feY¥e) n AP(R, Ly) .
Then the solution u, which existence is gu‘aranteed by Theorem 1, is also almost-
periodic, more specifically
ue Xg(6) n AP(R', H?).

As to the proofs of these statements, we refer to Section 6 concerning Theorem 1,
and to Section 7 for Theorem 2.

3. EQUIVALENT FORMULATION OF THE PROBLEM

In this section, our aim is to clarify the correspondence between the problems
(E), (B) and (S,). (S,), (B) outlined in the introduction.

Lemma 4. Let a couple (u, v) solve (S;), (S,), (B). u e X2, ve X3, each component
of D2u lying in X*, and
(3.1) [D2DZu(t)] <o, |D*u(t)] <&, teR!
for 6 > 0 small enough.

Then v = u,.

Corollary 2. Let (u,v) be a solution of (S,),(S;), (B) satisfying (3.1) for 6 > 0
sufficiently small.

Then u € Xg, u solving the problem (E), (B) and vice versa, i.e. if ue Xg(d) is
a solution of (E), (B), then (of course) the pair (u, u,) satisfies (S;), (S,), (B)-

Proof of Lemma 4. Set w = u,. Seeing that w, DZwe X' Q C([0, L] x R')
we are allowed to differentiate (S,) with respect to 1:

—aw,, + Fi(Diu, D'v) w,, + ... + Fy(D%u, D'v)w +
+ Fy(D3u, D'v) v, + ... + Fg(Du, D'v) v, = f, — v, — dv, .
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Setting z = w — v and comparing with (S;) we get
(a) —az,, + Fy(D2u, D'v) z,, + F5(Diu, D'v) z, + F3(Diu, D'v)z =0,
(b) 2(0, 1) = z(L,t) = 0.

Now, the coefficients F}, i = 1, ..., 3 are small together with their first derivatives
in C([0, L] x R') in accordance with Lemma 3, (F), and (3.1). Consequently, the

boundary-value problem (a), (b) possesses for each fixed ¢ € R* exactly one solution z,
namely z = 0. Q.E.D.

In view of Corollary 2, we are allowed to study the problem (S, ), (Sz), (B) instead
of (E), (B). This fact will enable us to prove the results claimed in Section 2.

4. THE LINEAR HYPERBOLIC EQUATION

Now, restrict our attention to solutions of the linearized equation related to (S,).
Consider the problem:

(Ly) P + atv,, + a*v,, + a®v, + blv, + b, + bR =¢g,
v =1o(x,1), xe(0, L), te[ty, +o0) together with the conditions
(B) v(0,8) =v(L, 1) =0, te[ty, +0),

(1) o(x, 1) = v%(x), vfx, 1) =v'(x), xe[0,L].

As to the coefficients appearing, we require
(4.1) aleY¥o), i=1,23.

(4.2) bie Yi(o), i=1,2,3.

Let us remark that there is a vast literature, hyperbolic problems of this type
being concerned. Note in passing that much more general results were obtained
concerning the regularity of coefficients and its relation to the existence question
(see e.g. Arosio [2]) than these we are going to present here.

On the other hand, we were not able to find appropriate references fitting our
specific situation. Nevertheless the methods employed are well known and we are

going to point out principal ideas only, the details being available e.g. in the book of
Lions-Magenes [6].

Lemma 5 (weak solutions). Suppose that
(4.3) wWeHy, vieL,, ge€L;d(te, +0), L,).

Then there exists a weak solution v to the problem (L,), (B), (I) uniquely de-
termined in the class

ve Ll,loc((to; + K)), Hé) n Wll,loc((to’ + OO), L2)

whenever o€ (0, ay) is sufficiently small.
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Moreover, if

(4.4) geY,
then ve C([to, + ), Hg) 0 C*([to, + ), L,) and the energy estimate
4.5) e? D' o(1)|* < cy[ef D! o(t,)|* + [i, e™g(s)|? ds]

holds for certain > 0.

Proof. (a) Uniqueness: The uniqueness in the aforementioned class of functions
can be shown using literally the same technique as in [2], [6].

(b) Existence: The existence may be stated with help of the Faedo-Galerkin
method (we refer to [6] for details), the finite-dimensional approximation being
based on the orthogonal system {sin (nm/Lx)} ;.

Note that D'a’e Y'(a) L,([0, L] x R') and, consequently, all standard
energy estimates can be derived for the approximate problems.

Moreover, following the line of arguments from [2], the continuity of the couple
(v, v,) regarding the energy space Hy x L, can be shown.

The decay estimate (4.5) is a direct consequence of the presence of the damping
term dv, in the equation and is easy to obtain via multiplying the equation (in fact
its finite-dimensional approximation) by v, + yv, y > 0 sufficiently small. Q.E.D.

Lemma 6. (strong solutions). Assume
(4.6) WeH*nH), vteH), geY'.

Then for all w€(0, ay) small enough, there exists a unique solution v of (L,),
(B). (1),

1
4.7 v e.nocf([to, + ), H* ™/ n Hy) 0 C¥([15, + o), L,)
j=

satisfying the estimate
(4.8) e |D? o(1)|* < cs[ef|D? v(t,)|* + [i, e®|D" g(s)|* ds] .

to
Remark. D? u(t,) is determined with help of v° v', and the equation (L,).
Especially, we denote v = v,(*, t,).

Proof of Lemma 6. The regularity result (4.7) is achieved by a formal dif-
ferentiation of (L,) by ¢. Differentiating actually the Faedo-Galerkin approximation,
this step is fully justified.

Repeating arguments of the proof of Lemma 5, the regularity of the function v, is
obtained. Note that, taking advantage of the choice of the basis, the approximate
problems admit multiplication by the term v,,. Thus, the hardest terms to cope
with, namely

A = [§a;(t) v 1) v(t)dx, B = [§b}(t) v(t) v,(t) dx,
are estimated in the following way.

4] = Jlai®)]% vxl®)]2 Jou®)]2 -
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|B|

IIA

(LHOIES O PR ERO] PR
callbr(®)]2 Jox(O)]l2 lodt)]2

the term [v,,(t)], being estimated from above with help of |[v,(t)|],, [v.{t)]2 bY
means of the equation (L, ).

Consequently, all results claimed in Lemma 5 hold for v, as well.

Finally, using (L,) again, the regularity of v, is obtained. Q.E.D.

IIA

Lemma 7 (classical solutions). Assume that b* = b> = b> = 0 and
(4.9) WeH NH), v'eH*nH), geY?
together with the compatibility condition
(4.10) v? = v,(+, tg) € Hy .

Then for all ae(0, ) small, the problem (L), (B), (1) possesses a unique
(classical) solution v,

2
(4.11) ve N C/([ty, +©), H* I n Hg) n C¥([to, + ). L,) .
A

J
v satisfying

(4.12) | D? o(1)]> £ es[e°|D? o(1,)|* + i, ¥ D% g(s)|* ds] .
for certain f > 0.

Proof. Seeing that b' = b*> = b> = 0, our basic strategy is to differentiate (L)
and apply Lemma 6 to the function v,.

To this end, we express
(a) Uy = (“ - al)“l (Utt + dv, + asvn + az'-’.\-t - g)-

Taking advantage of this equality and setting w = v, we deduce that w is a unique
weak solution of the problem (L,), (B), (I') with

(L,) Pw + a'wy + atwy, + adw, + blw, + bPw, + biw =
=g,+aa—a)"yg,
(1) w(*, to) =01, w{*, 1) = 0v?

where b’ are determined by a' and satisfy (4.2) in view of Lemma 2, 3.

Consequently, Lemma 6 yields the regularity of w. Using (a) we derive the regular-
ity of v regarding the variable x. Q.E.D.

Having prepared all preliminary statements we are about to show the main result
concerning the global existence of bounded solutions to the linearized problem.

Theorem 3 (bounded solutions). Consider the problem

(L) &L + a'v,, + a*vy, + a*v, =g on (0,L) x R
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together with the condition (B) where
(4.13) ate Y o), ae(0,m), geY*,
=1,2,3, k=1 or k=2.

The problem (L), (B) possesses a unique solution v, ve X§*" such that
(4.14) | DX+ o(t)] < cq ess sup {|D* g(s)|, se R'}.

Proof. Take a function ¥, € C*(R"),

=0 on (—o0, —n]
[0 1] on [—n,—n+ 1]
1 [—-n+ 1, +0).

According to Lemma 7, we are able to solve the initial boundary value problems
(a) Lo + a'vy, + a*vy, + a*vf, =Y,g on (0,L) x [—n, +0),
(b) 0(0,1) = v"(L, 1) =0, te[—n, +o0),

() (s, —n) =vj(-, —n) = 0.
We set v" = 0 for t € (— o0, —n] so that v" may belong to the space X§*'.
In view of (4.8), we get
| DL 0(1)] < cg esssup {|D*g(s)| | se R'} .

The right-hand side of the above relation being bounded, there is an accumulation

point ve Y§*' of the sequence {v"};2, with respect to the weak-star topology
induced on L,(R*, L,).

Dealing with a linear equation we infer v solves (L), (B) on R'.
The regularity results achieved in Lemma 7 imply, in fact, v e X£*1,
The uniqueness of a bounded solution is an easy consequence of (4.12). Q.E.D.

5. THE NONLINEAR ELLIPTIC PROBLEM

We are going to discuss the “elliptic” equation corresponding to (S,).

Lemma 8. Let f € Y3(¢), ve X*(9), ¢, 6 > 0 being sufficiently small.
Then we are able to find a uniquely determined (small) function u eX) Diue
€ (X', u = 9(v,f). u being a solution of the equation (S,), (B) on R* for f, v fixed.
Furthermore, we have the estimates
(1) DD — ) (0] = eolD 6t — ) (1)
(5.2) |D*DZ u’(t)] < cy0| DX £(2)|
where k = 0,1, te R', u' = 4(v', f), 1—~0,1,2 v° = 0.

In case ve X3(5), we obtain ue X, Diue(X?)?, and (5.1), (5.2) hold even for
k=2
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Proof. For fixed v, f consider an operator S determined for all u,
ueB(y) = {ueXq, |D'Du(t) <9}, y>0

as a unique solution of the linear problem

(2) —a(Su), + F(Diu, D'v) = f — v, —dv on (0,L) x R!,
(b) Su(0,1) = Su(L,t) =0, teR'.
For k = 0,1 we deduce
(c) |D*DX(Su' — Su?) (1) £ 44| D(F(DZu', D'v) — F(Du?, D'v))(t)| <

(according to (1.3), (F))
< ¢y max {8, y} hy(max {3, y}) D*D2(u' — u?)(¥)] .
Next, we set u> = 0 in (c) to obtain
(d) |D*DZS u(t)| < |D*DZ S(0) (¢)] + ¢,y max {3, y} x
hy(max {8, y}" |D*D? u(1)| <
cia[e + 6 + max {8, 9} hy(max {8, y}) |D*D? u(t)[] .

X

IIA

Choosing ¢, 8 > 0 appropriately small we can see that
S: B(y) - B(y)

is a contractive mapping for certain (small) y > 0. Consequently, there is a uniquely
determined fixed point of S in %#(y) — a solution of (S,), (B).
In order to establish (5.1), we estimate

|D*Di(u' — u?) (1)] < i3 DHF(DZu', D'o') — F(DZu?, D'v?)) (1)| +
+ Dt = o) ()]
With Lemma 3 in mind, we obtain
|DHF(Dju', D'v*) — F(D}u?, D*v?) (1)| <
< ¢y4 max {y, 8} hy(max {3, y}) [|D*D(u" — u?)(1)| +
+ [Pt = 0?) (O]
which yields immediately (5.1). Q.E.D.

6. THE PROOF OF THEOREM 1

First of all, we claim that, in view of Corollary 2, we ' may confine ourselves to the
system (Sy), (S,), (B).

Existence. We try to solve the problem taking advantage of a standard iterative
technique.
Starting with v = 0 we determine a sequence {v"};2; of approximate solutions
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using

(s7) L 4 F (D‘u Dlvn)vn+1 + Fy.. Jomtt Fs( )vn+1 -
= —Fy(...)vh — Fy(..)v" — Fg(...)vf +f, on (0,L) x R',

(B) "0, 1) = v"* (L, 1) =0, teR!

where the function u” = %(v", f) is a unique solution of

(S3) —aul, + F(DZu", D"v") = f — v} — dv" on (0,L) x R,

(B) u"(0,1) = u"(L,1) =0, teR'.

Our present goal rests on the choice of ¢ > 0 appropriately small so that the relation
(6.1) feY(e)
may ensure solvability of (S7), (S3) with
(6.2) eXy(d), n=1,2,...
for sufficiently small 6 > 0.

Assume that we have already determined the functions v*, k = 1, ..., n satistying
(6.2).

By means of Lemma 8, the function u” can be found, u" being determined by (S}),
(B).

Inserting u", v" into (S}) we are able to get v
namely

n+1

provided we can verify (4.13).

Fy(D2u", D'v") e YX(o), i=1,4,5

for o > 0 small enough.

In view of Lemma 3, we get

(6.3) |D*F(Diu", D'v") (1)] <
(according to (1.2), (F))
< hy(max {|D>DZ u"(t)|, 6}) max {|D*D} u"(1)|. 6} <
(in accordance with (5.1), (5.2))
< hy(max {¢, 6}) max {e, 6} .

Thus for ¢, 6 > 0 small, (4.13) is satisfied and we can apply Theorem 3 to obtain
the function v"*! e X3.
As a final step, we are about to show (6.2) for v"*'. With (1.1) in mind, we deduce
|D3 v"* (1)) £ cq ess sup { max |DXFY(DZu", D*v") (s)| & + &} <
seR1 i=2,3,6
(according to (6.3))
< ¢;5(hs(max {e, 6}) max {¢, 6} & + ¢). '
Consequently, (6.2) holds for v"*' whenever ¢, § > 0 cue chosen appropriately small.

We conclude that there are sequences {u"};~,, {v"} ., determined by (S7), (S3),
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{B) such that
(6.4) e Xy(d), u'eXy, Diu"e(X*5)).
As a consequence, passing to subsequences as the case may be, we get the existence
of a pair (u, v),
(6.5) D*DZu" - D*DZu ,
(6.6) D" - D%
componentwise with respect to the weak-star topology on the space L,(R', L,).
Moreover, we have

DZu", D*v" e X*(8) Q Hpo((0, L) x R*).

Seeing that the embedding H*(K) O C(K), K = R? compact, is completely con-
tinuous, we derive
(6.7) D>u" — D*u, DY — D'
in the strong topology of C,([0, L] x R').

Similarly, we get D*v" € X'(6) G Hoo((0, L) x R'), and consequently
(6.8) D*" - D*»
componentwise in the strong topology on L, 1o((0, L) x R'), p < + 0.

As a result of (6.7), (6.8). we deduce that ue Yy, Diue(Y*(8))®, ve Y;(d) is
a solution of (8S,), (S,), (B).

According to the regularity result for linear problems achieved in Theorem 3,
we get, in fact

(6.9) ueXy, Diue(X*(8)?, veXy(d),
Lemma 8 being taken into account.

Uniqueness. Suppose we have two pairs (u', v'), (u?, v?) satisfying (S,), (S,), (B),
and (6.9).
Setting w = v' — v we obtain from (S,)

(6.10) Lw + Fy(D2u', Do) wyy + ... + Fy(Diu', D'o")w,, =
= (Fy(Du?, D'v?) — Fy(D2u', D'v")) v} + ... +
(Fy(D2u?, D'0?) — Fy(DZu', D'v")) v}, +
Fy(DZu?, D'v?) v} — Fy(Du', D'v') vy + ... +
Fy(D2u?, D'v*) v} — Fyg(D2u', D'v') v, .
Evoking the relation (4.14) for k = 1 we obtain
D w(n)| <

(according to Lemma 2, 3)
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< sup (5 140 [ D3w = ) (9] + 020! — ) (5)]} =
(using (5.1))
< Shs(8) sup {|D* w(s)| | se R} .
If 6 > 0 is small enough, we deduce
(6.11) |D? w(1)] < % sup {|D* w(s)| | s € R"}

which yields w = 0, and (by (5.1)) u' = u”.
Theorem 1 has been proved.

7. THE PROOF OF THEOREM 2

Suppose
(7.1) feYe)n AP(R', L,) .
Assume that
u¢ AP(R', H?).

In view of Lerama 1 there is a sequence {1,}>.; = R' such that

(7.2) f(+ + t,) > f uniformly in C(R!, L,)
and two subsequences {1, _,, {1} <., satisfying
(7.3) Hu(s,, + 1) — u(s, + t;:)“Hz =2K>0

for a certain sequence {s,} ;- .
Repeating arguments from the proof of existence in Section 6 we can extract
subsequences such that
w =limu(- +s,+ 1), v =Ilim@- +s,+ 1),
u' =limu(s +s,+ 1), o"=lim(v- +s, + 1)
the pairs (u’,v'), (u”, v") solving (S}, (S,), (B) with the right-hand side f = f,
f.= f" respectively where
fr=1lmf(- + s, + ), f"=Lm(-+s, + 1)
n—w n— oo
uniformly in C(R', L,).
But according to (7.2), we have necessarily f = f”. On the other hand, combining
(6.7) together with (7.3) we deduce

u! #: ul/ .
Thus, we have obtained a contradiction with unjqueness claimed in Theorem 1.
The proof of Theorem 2 is complete.
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