Previous |  Up |  Next

Article

References:
[1] Alikakos N. D.: $L^p$ bounds of solutions of reaction-diffusion equations. Comm. Partial Differential Equations 4 (1979), 827-868. DOI 10.1080/03605307908820113 | MR 0537465
[2] Aronson D. G., Crandall M. G., Peletier L. A.: Stabilization of solutions of a degenerate nonlinear diffusion problem. Nonlinear Analysis 6 (1982), 1001 - 1022. DOI 10.1016/0362-546X(82)90072-4 | MR 0678053 | Zbl 0518.35050
[3] Ball J. M.: Remarks on blow-up and nonexistence theorems for nonlinear evolution equations. Quart. J. Math. Oxford 28 (1977), 473-486. DOI 10.1093/qmath/28.4.473 | MR 0473484 | Zbl 0377.35037
[4] Benilan P., Crandall M. G.: The continuous dependence on $\varphi $ of solutions of $u\sb{t}-\Delta \varphi (u)=0$. Indiana Univ. Math. J. 30 (1978), 161-177. MR 0604277
[5] Fila M., Filo J.: Stabilization of solutions of certain one-dimensional degenerate diffusion equations. Mathematica Slovaca 37 (1987), 217-229. MR 0899439 | Zbl 0619.35064
[6] Fila M., Filo J.: A blow-up result for nonlinear diffusion equations. Mathematica Siovaca 39(1989),331-346. MR 1016350 | Zbl 0704.35071
[7] Filo J.: On solutions of perturbed fast diffusion equation. Aplikace Matematiky 32 (1987), 364-380. MR 0909544
[8] Friedman A.: Partial Differential Equations. Holt, Rinehart and Winston, New York 1969. MR 0445088 | Zbl 0224.35002
[9] Galaktionov V. A.: A boundary value problem for the nonlinear parabolic equation $u\sb{t}=\Delta u\sp{\sigma +1}+u\sp{\beta }$. Differential Equations 17 (1981), 836-842 (Russian). MR 0616920
[10] Langlais M., Phillips D.: Stabilization of solutions of nonlinear and degenerate evolution equations. Nonlinear Analysis 9 (1985), 321 - 333. DOI 10.1016/0362-546X(85)90057-4 | MR 0783581 | Zbl 0583.35059
[11] Levine H. A., Sacks P. E.: Some existence and nonexistence theorems for solutions of degenerate parabolic equations. J. Differential Equations 52 (1984), 135-161. DOI 10.1016/0022-0396(84)90174-8 | MR 0741265 | Zbl 0487.34003
[12] Lions P. L.: Asymptotic behavior of some nonlinear heat equations. Physica D5 (1982), 293-306. MR 0680566
[13] Nakao M.: Existence, nonexistence and some asymptotic behavior of global solutions of a nonlinear degenerate parabolic equation. Math. Rep., College Gen. Ed. Kyushu Univ., 1983, 1-21. MR 0737351
[14] Nakao M.: $L^p$-estimates of solutions of some nonlinear degenerate diffusion equations. J. Math. Soc. Japan 37 (1985), 41-63. DOI 10.2969/jmsj/03710041 | MR 0769776 | Zbl 0584.65073
[15] Ni W. M., Sacks P. E., Tavantzis J.: On the asymptotic behavior of solutions of certain quasilinear parabolic equations. J. Differential Equations 54 (1984), 97-120. DOI 10.1016/0022-0396(84)90145-1 | MR 0756548 | Zbl 0565.35053
[16] Payne L. E., Sattinger D. H.: Saddle points and instability of nonlinear hyperbolic equations. Israel J. Math. 22 (1975), 273-303. DOI 10.1007/BF02761595 | MR 0402291
[17] Sacks P. E.: Continuity ofsolutions ofa singular parabolic equation. Nonlinear Analysis 7 (1983), 387-409. DOI 10.1016/0362-546X(83)90092-5 | MR 0696738
[18] Sacks P. E.: Global behavior for a class of nonlinear evolution equations. SIAM J. Math. Anal. 16 (1985). DOI 10.1137/0516018 | MR 0777465 | Zbl 0572.35062
[19] Tsutsumi M.: Existence and nonexistence of global solutions for nonlinear parabolic equations. Publ. R.I.M.S., Kyoto Univ. 8 (1972/73), 211 - 229. DOI 10.2977/prims/1195193108 | MR 0312079 | Zbl 0248.35074
Partner of
EuDML logo