[2] J. D. Halpern P. E. Howard:
Cardinals m such that 2m = m. Proc. Amer. Math. Soc. 26 (1970) 487-490.
MR 0268034
[5] T. Jech:
The Axiom of Choice. Studies in Logic and the Foundation of Mathematics 75, North Holland, Amsterdam 1973.
MR 0396271 |
Zbl 0259.02052
[6] T. Jech A. Sochor:
Applications of the $\Theta$-model. Bull. Acad. Polon. Sci. 16 (1966) 351-355.
MR 0228337
[7] A. Levy:
The independence of various definitions of finiteness. Fund. Math. XLVI (1958) 1-13.
MR 0098671 |
Zbl 0089.00702
[8] A. Levy:
Basic Set Theory. $\Omega$ Perspectives in Mathematical Logic. Springer-Verlag 1979.
MR 0533962
[9] A. R. D. Mathias:
Surrealistic landscape with figures (a survey of recent results in set theory). Periodica Math. Hungarica 10 (1979) 109-175.
DOI 10.1007/BF02025889 |
MR 0539225
[11] G. Sageev: A model of ZF in which the Dedekind cardinals constitute a natural nonstandard model of Arithmetic. To appear.
[13] L. Spišiak: Definitions of finiteness. To appear.
[14] A. Tarski:
Sur quelques théorèmes qui équivalent a l'axiome du choix. Fund. Math. 5 (1924) 147-154.
DOI 10.4064/fm-5-1-147-154