Previous |  Up |  Next

Article

References:
[1] A. Blass: Existence of bases implies the axiom of choice. In J. E. Baumgartner, D. A. Martin, S. Shelah editors. Axiom. Set Theory. Contemporary Mathematics 31 (1984) 31 - 33. DOI 10.1090/conm/031/763890 | MR 0763890 | Zbl 0557.03030
[2] J. D. Halpern P. E. Howard: Cardinals m such that 2m = m. Proc. Amer. Math. Soc. 26 (1970) 487-490. MR 0268034
[3] J. D. Halpern P. E. Howard: Cardinal addition and the Axiom of Choice. Bull. Amer. Math. Soc. 80 (1974) 584-586. DOI 10.1090/S0002-9904-1974-13510-X | MR 0329890
[4] T. Jech: Eine Bemerkung zum Auswahlaxiom. Časopis Pěst. Mat. 93 (1968), 30-31. MR 0233706 | Zbl 0167.27402
[5] T. Jech: The Axiom of Choice. Studies in Logic and the Foundation of Mathematics 75, North Holland, Amsterdam 1973. MR 0396271 | Zbl 0259.02052
[6] T. Jech A. Sochor: Applications of the $\Theta$-model. Bull. Acad. Polon. Sci. 16 (1966) 351-355. MR 0228337
[7] A. Levy: The independence of various definitions of finiteness. Fund. Math. XLVI (1958) 1-13. MR 0098671 | Zbl 0089.00702
[8] A. Levy: Basic Set Theory. $\Omega$ Perspectives in Mathematical Logic. Springer-Verlag 1979. MR 0533962
[9] A. R. D. Mathias: Surrealistic landscape with figures (a survey of recent results in set theory). Periodica Math. Hungarica 10 (1979) 109-175. DOI 10.1007/BF02025889 | MR 0539225
[10] G. Sageev: An independence result concerning the Axiom of Choice. Ann. Math. Logic 8(1975) 1-184. DOI 10.1016/0003-4843(75)90002-9 | MR 0366668 | Zbl 0306.02060
[11] G. Sageev: A model of ZF in which the Dedekind cardinals constitute a natural nonstandard model of Arithmetic. To appear.
[12] W. Sierpinski: Cardinal and ordinal numbers. PWN, Warszawa 1958. MR 0095787 | Zbl 0083.26803
[13] L. Spišiak: Definitions of finiteness. To appear.
[14] A. Tarski: Sur quelques théorèmes qui équivalent a l'axiome du choix. Fund. Math. 5 (1924) 147-154. DOI 10.4064/fm-5-1-147-154
[15] A. Tarski: Sur les ensembles finis. Fund. Math. 6 (1924) 45-95. DOI 10.4064/fm-6-1-45-95
[16] J. Truss: Classes of Dedekind finite cardinals. Fund. Math. To appear. MR 0469760 | Zbl 0292.02049
Partner of
EuDML logo