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1. INTRODUCTION

To taste the fine structure of various finiteness-like notions we deal with Zermelo-
Fraenkel set theory ZF without the (somewhat supercilious) Axiom of Choice
under which the eight historical definitions of finiteness of sets are equivalent.

Apparently, the study of finiteness dates back to R. Dedekind, A. N. Whitehead,
B. Rusell, A. Tarski, W. Sierpifiski, A. Mostowski and others. More details about
the history can be found in [12, Ch. III §9] and [7]. Surveys are given in [12],
[8, Ch. III & V], [9-life without Choice] and [5].

In this section we give the basic definitions, provide the background information and
state the main results (Theorem 1.1, Theorem 1.2). The proofs will be given in Section 2.
In Section 3 we discuss various applications of our main theorems and we investigate
the notion of compactness in topology and logic based on the particular definition
of finiteness. In general, our notation is the standard set-theoretic one, see e.g. [8].

Let us recall almost verbally the definitions of finiteness from [7] ((ii) and (viii) are
due to A. Levy, (v) to R. Dedekind and the rest is due to A. Tarski).

Definition 1. A set A is said to be
(i) Ffinite if every nonvoid family of subsets of 4 has an <-maximal element,
(ii) I-finite if it is not the union of two disjoint sets neither of which is finite
according to definition Z,
(iii) IF-finite if every non-void <-monotone family has a =-maximal element,
(iv) IILfinite if the power set of A is irreflexive (i.e., there is no one-to-one
mapping of #(4) onto a proper subset of #(4)),
(v) IV-finite if it is irreflexive,
(vi) V-finite if |A| = 0 or 2. |A] > |4],
(vii) VI-finite if |4] = O or |4| = L or |4]* > |4, -
(viii) VILfinite if A is Ifinite or A is not well-orderable.
The results contained in this paper were subsequently presented at the Czechoslovak Com-
binatorial Conference (June 1983, Sirava), Winter School on Abstract Analysis (February 1984,

Srni) and at the Student Research Competition (1982, 1983, 1984, Safarik University Kogice,
prepared by the first author under the guidance of the second author).
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For the reader’s convenience we present some equivalent definitions. A set 4 is:
(i) Hinite iff it is an one-to-one image of some natural number iff [A] < No;
(i) I-finite iff the Fréchet filter {B = A: |4 — B| < N} is an ultrafilter; (iii) Z7II-
finite iff 241 + 1 > 214Viff 2141 3 Wo; (iv) IV-finite iff [A| + 1 > |4 (i.e. the pidgeon
hole principle holds for A) iff [A4] % N,.

To simplify the notation, let F, F; vary over I, I, IL, IIL IV, V, VL, VII (in § 2
also over the symbols of derived definitions of finiteness). A set A is said to be F-infinite
if it is not F-finite and F, — F, abbreviates the following formula in the language
of ZF(ZFU): (VA) (4 is Fy-finite - A is F,-finite). In literature, Ifinite setsarealso
called Tarski-finite, IV-finite are called Dedekind-finite, V-infinite sets are known
as idemmultiple and VI-infinite sets are called idempotent. Denote by Jgﬁ the (proper)
class of all F-finite sets in a model 9, i.e. JI¥ = {AeM:M i:A is F-finite}; we omit
M if there is no danger of misunderstanding.

Observe that all proofs (and hence all statements) through-out this paper are
proofs (and statements) in both ZF and ZFU theories.

Theorem (A. Levy [7]). If a set is finite according to any of the above definitions,
it is finite also according to any definition which follows it. In symbols

I-1-II->HI->1IV->V->VI->VI,
or

helh,clushuslvelslhishn.

It is known (see [7])that in ZFU all these definitions are independent (Mostowski,
Lindenbaum) and in ZFU + OP (Ordering Principle) we have I = II and all others
are independent (Doss, Levy). In ZF, the independence of all these definitions was
shown in [6] (Jech, Sochor).

Easily, AC is equivalent to the following statement “all I-infinite sets are well-
orderable”, i.e., to (I = VII). A. Tarski in [14] has shown that the Axiom of Choice
is equivalent to ““all Finfinite cardinals are idempotent”, i.e., to (I = VI). In 1924
A. Tarski asked whether AC is equivalent to ‘“‘all Iinfinite cardinals are idem-
multiple”. The problem was known as “idemmultiple hypothesis” and has been
raised on a number of occasions. It was solved in the negative by J. D. Halpern
and P. E. Howard ([3]) in ZFU and G. Sageev ([10]) in ZF. Summarized in symbols:

AC=(I=VI))=(I=VvZ(I=V).

Our first theorem provides another result in this area. In particular, we prove that AC
is equivalent to “‘every idemmultiple cardinal is idempotent” and equivalent to
“every idempotent cardinal is well-orderable”; in symbols:

AC = (VI = VIII) = (V =VI).
Note that this is a strengthening of the above mentioned result by Tarski.
Theorem 1.1. The following assertions are equivalent:

(i) AC;
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(i) (Va) (2a = a > a* = a);
(iii) (Va) (a* = a —> a is well-orderable).

tactically (graphically) equal, ¢, 2 (I =1L), ¥, £ (I, = II), ¥, % (I = III),
Ve 2 (II=1V), s £ (IV = V), Yo £ (V = VI) and y, £ (VI = VII), For ¢
€ {0, 1} we define y° as follows: ' = 71, Y° £ . So for each ¢ = {5,,....,6,} €
€ {0, 1} the statement

To formulate our next result we introduce the following notation: X means syn-

7

3

= AV
i=1

describes “‘the simultaneous occurrence of different types of finite sets”.

Conversely to every model MM of ZF(ZFU) we assign a vector (M) = (54, ..., §7)
by putting
8; =0 whenever M=y, (iff JT =J7)

5, =0 whenever M=y, ...

The situation can be illustrated by the following scheme:

OIDIDIOIDIDIDID
A L A

Theorem 1.2. For
g =(0,0,0,0,0,0,0),
&, = (0,0,0,0,0,1,1),
€3 =(0,0,0,0,1,1,1),

ee =(0,0,0,1,1,1,1),
es =(0,0,1,1,1,1,1),
g =(0,1,0,1,1,1,1),
e, =(0,1,1,1,1,1, 1),
eg = (1,1,0,1,1,1,1),
g = (1,1,1,1,1,1,1),

the following statement is provable both in ZF and ZFU:
Pey ¥V Py V Pey NV Py NV Qg NV Qe NV Qe NV Qg VP

Observe, that Theorem 1.2 states that for every model MM of ZF (or ZFU),
e(M) e {eg, ..., &}, ie., for every 9)2 it suffices to consider only 9 of the possible

27 = 128 statements of the form /\ Y24 no other statement of this form can be

valid. Clearly, &, refers to models of AC. According to Theorem 1.2 the models
constructed by Halpern & Howard and Sageev respectively are of type &,. While
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Tarski’s result states that g(9) = (0,0,0,0,0,0,1) cannot occur, Theorem 1.1
excludes the occurrence of models for which min (J, 6;) = 0 and simultaneously

max (8;) = 1, ie., it excludes further 94 possibilities. Theorem 1.2 helps us to
i=1,..,7

exclude the remaining 24 possibilities.

2. CLASSIFICATION OF DERIVED DEFINITIONS OF FINITENESS

Recall that Tarski’s definition of IIl-finiteness is derived from the D:dekind’s
definition of IV-finiteness via the power set operation. In the same way (using the
power set operation) for each I-, I-, II-, III-, IV-, V-, VI-, VII-finiteness we derive
the definitions of I"-, I-, ..., VII"-finiteness. We shall investigate the relationships
between all these notions (Theorem 2.1). This method, although simple, appears
to be very fruitful.

Definition 2. Let F vary over I, I, II IIL IV, V, VI, VII. We say that a set A
is F"-finite if g’(A) is F-finite.

Theorem 2.1. In ZF (or ZFU) the following implications are provable:

" N v " Vi
/ I; I vi vi

Proof. IIl" — Iis due to Tarski [15], who proved that if 4 is Finfinite then 9’;?(A)
contains a denumerable set. By definition, III «> IV". As 2.2° = 2" + 1 > 2° we
have III - V". We prove V" — IV indirectly. Assuming a = a + 1, we have
2% 2 2°"1 =2.2% and the assertion follows. Similarly, if 2a < a, then (2°)* =
= 2% < 2% proves VI” — V. Implication VII — VII" follows from the following
observation. Each set A is isomorphic to {x € 2(A4): |x| = 1} which is a definable
part of 2#(A). So, if 2#(A) is well-ordered then A is well-ordered too.

Problem 2.1. (i) We know that IIl - V" - IV and IV IIL Is it true that
V' — U (i.e. HI V") or IV - V" (i.e. IV V")?

(ii) Similarly, we know that ITII - VI" -V and we ask which one, if any, of
the following three statements VI" — III, VI" — IV, VI" « V holds true.

Now we prove several lemmas of the type “if F; — F, then F; — F,”, or, using
“é-notation” from introduction, of the type “d; = 0 — §; = 0”. Proofs can be
often better visualized if looking and ““walking” through the diagram from Theorem 2.1
just using the fact that if F; —» F, then also F; — F;. The next lemma is a slight
generalization of the nontrivial implication in Tarski’s Theorem ([14]; see [8,
Proposition V. 1.14]) which states (VI — I) > AC (ie. if 6; =6, = 6; = 6, =
= 5 = 0 = 0 then 8, = 0).
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Lemma 2.2. If every VI-finite set is V-finite, then every VII-finite set is VI-finite
(ie. 96 =08, =0).

Proof. We follow Tarski’s original idea. Take an idemmultiple cardinal a.
Since a* is a cardinal number greater then N, (recall that a* denotes Hartog’s
number, i.e., the least ordinal B such that B £ a), a + a* is also idemmultiple.
Thus (without AC) 2a* = a* and also 2(a + a*) = 2a + 2a* = a + a*. Now
we literally follow Tarski (see [8]). By the assumption, a + a* is idempotent, i.e.,

(a+a*P=a>+2.a.a" +(a") P =a+a",

so a.a’ < a+ a*. This is known ([8, Lemma V. 1.13]) to imply a < a*, ie.,
a is a well-ordered infinite cardinal.

Weshow that the converse implication (to Lemma 2.2) holds. Namely, Lemma 2.3
yields a stronger statement.

Lemma 2.3. If every VII-finite set is VI-finite, then every VII-finite set is IIl-finite
(i.e. 6 =065 = 05 = 9, = 0).

Proof. We use our “diagram”. First, we show that 6; = 0 - §5 = 0. Take an
arbitrary VI-finite set A. Then A is VII-finite and so also Q‘(A) is VII-finite. By the
assumption, Q’(A) is VI-finite and, using VI” — V, we have that A4 is V-finite.

Second, we prove 8, = 0 > 5 = 0. Take a V-finite set A. It is VIIfinite, and so
is #(A4). From 6, = 0 and d, = 0 we know that 2(A) is V-finite. By Theorem 2.1,
this implies that 4 is IV-finite.

Finally, take a IV-finite set 4. By the same argument as in previous steps, 4 €
ey~ P(A)elyy > P(A) ey o Ak, ie., 6, = 0.

The next lemma is a simple consequence of another Tarski’s result ([15], see [8,
Proposition III. 1.28]); it states that if 4 is Linfinite then 2(A) is IV-infinite.

Lemma 2.4. If every IV-finite set is IIl-finite, then every IV-finite set is I-finite
(iie. 6, =0->0; =06, =06, =0).

Proof. Take an IV-finite set A. By the assumption it is IIIfinite, i.e. 2(A) is
IV-finite. So again, 2(A) is III-finite. This means precisely that 22(A) is IV-finite.
By Tarski’s observation ([8, IIL, 1.28]), this means that 4 is Ifinite.

Now we are ready to prove Theorem 1.1 and Theorem 1.2, already formulated
in the introduction.

Proof of Theorem L.1. It is obvious that AC implies both (i) and (ii). Lemma 2.2
says that (i) implies (ii). Lemma 2.3 says that §; = 0 implies J5 = J5 = 8, = 0
and lemma 2.4 guarantees the rest, i.e., 5, = 0 implies 3 = J, = §; = 0.

Proof of Theorem 1.2. Searching for possible values of ¢ represented by models
of ZF (or ZFU), we observe that Theorem 1.1 forbids all possibilities with
max (6;) = 1 and min {8, ;} = 0, i.e., 95 possibilities (one of them, namely
(0, 0,0,0,0,0,0, 1) is forbidden by the last Tarski’s theorem). We have still 33
possible &’s. Moreover, Lemma 2.4 forbids all possibilities with max {J,, 3,, 93} =
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=1,04 =0, 55 = 6, = 1 and J5 arbitrary; this forbids another 14 ¢’s. We still have
19 possibilities. The next lemma takes us still further.

Lemma 2.5. If every Il-finite set is I-finite, then every I-finite set is Lfinite
(i.e. 6, =08, =0).

Proof. Contrariwise, assume A€, — J;. Now J; < )y implies 4 € Jy;. Then
2.A is also Il-finite (check the definition) but, obviously, 2.4 is not I-finite.

Lemma 2.5 forbids the following 4 possibilities, (1,0, 03, 1,05, 1, 1), 03,05 €
€ {0, 1}. So, it remains to check 15 possibilities.

Our final estimate is based on Lemma 2.6; the proof appears in [13]. After ha-
ving submitted [13] we learned that the same statement has been already proved by
Halpern and Howard in [2].

Lemma 2.6. If every V-finite set is IV-finite, then every IV-finite set is I-finite
(i.e. 65 =008, =063 =6, =8, =0). ‘

This lemma forbids (from what was still left) ¢ = (8, 6,, 85, 1,0, 1, 1), where
8,€{0,1} and either 6, =6, =0, or 6, =1&0, =0, or &, =4, =1, ie,
6 possibilities. Altogether, 9 possibilities are left — and this is at present our best
achievement. It is easy to check that the remaining nine &’s are the following ones:

¢ =(0,0,0,0,0,0,0),

€, =(0,0,0,0,0,1,1),

g3 =(0,0,0,0,1,1,1),

e, =1(0,0,0,1,1,1,1),

es =(0,0,1,1,1,1,1),

g =(0,1,0,1,1,1,1),

e, =(0,1,1,1,1,1,1),

£g = (1, 1,0,1,1,1, ]),

g =(1,1,1,1,1,1,1).
In [13] it is shown that there are models of ZF (or ZFU) such that g(9) attains
at least 5 of the remaining 9 possible ¢’s. This gives an estimate from below.

3. DISCUSSION, PROBLEMS AND REFLECTIONS

3.1. Finer classification of Dedekind finiteness. It is a common feeling that defini-
tions up to IV are good approximations of finiteness; the other definitions (¥, VI, VII)
are technical tools only for studying the universe of non-well-orderable sets. Further,
VII is an upper bound for any future reasonable generalization of finiteness. Our
classification from Theorem 1.2 restricts simultaneous occurrence of various Dedekind-
finite sets. Denote by & the obvious modification of ¢ for Dedekind-finite sets. For 5
considered definitions I, I, II, III, IV there are 2* = 16 types of &s possible, but

> fao
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our theorem allows at most 7 of them, namely:

& =(0,0,0,0),
& =(0,0,0,1),
& =(0,0,1,1),
&, =(0,1,0,1),
& =(0,1,1,1),
g =(1,1,0,1),
g =(1,1,1,1).

Problem 3.1. What are further restrictions on &s or which of them do occur in
models?

3.2. Linearly ordered Dedekind cardinals. More information we obtain while
concerning the following problem. In notation we follow G. Sageev ([11]): y,
denotes the statement that any two IV-finite cardinals are comparable. Sageev
constructed a model of ZF + y, + J; + Jyy. Moreover, J. Truss ([16]) proved that
y4 implies J; = J;,. Observe that under y, & J; % J5 only 4 types of simultaneous
occurrence of various Dedekind-finite cardinals are possible, namely:

& =(0,0,0,1),
£ =1(0,0,1,1),
&, =(0,1,0,1),
& =(0,1,1,1).

This sheds some light to a question by G. Sageev ([11]) which we reformulate as
follows.

Problem 3.2. (i) Does y, imply one of these possibilities?
(ii) Which & is assigned to Sageev’s model?

3.3. CAC, AD. Note that under CAC (Countable Axiom of Choice) and therefore
also under AD (Axiom of Determinateness) we have I = IV (for every ne w, if
A ¢ J; then the set {f: n — A; f is one-to-one} is nonempty). So, under CAC & T1AC
(or AD) the universe admits only the following &’s:

e, =(0,0,0,0,0,1,1),
e3 =(0,0,0,0,1,1,1).
This shows the necessity of finer classification of the universe of non-well-ordered

sets, in particular, the finer classification of the realm between VI-finiteness and
VIl-finiteness. '

3.4. Subsets of reals. The behaviour of subsets of reals without AC was studied,
e.g., in [4]. It is known that for any linearly ordered set Finfinite subsets are II-
infinite. Moreover, it goes back to Tarski that infinite subsets of reals are II-infinite,
already. Assume the nontrivial case, namely, let R be non-well-ordered .As 2. R =
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~ R? ~ R, R itself is a VIIfinite and VI-infinite set. Proofs of Theorem 1.1 and
Theorem 1.2 can be carried out in any structure closed under the power set operation,
but this is not the case of subsets of reals. So, there are 8 possible types of simultaneous
occurrence of different types of

n= (03 07 07 Q15 Q25 23, 1)

of finite subsets of reals and our results yield no restriction. Such questions will be
discussed in [13].

3.5. Estimating the iteration of the power set operation. Tarski ([15]) showed that
that for A ¢ J; we have 22(A) ¢ Jy. From our results (looking at the table of ¢’s)
we can conclude for instance that given A € ),y — Jyp, there are ky, k,, k3 e
such that

g’k’(A) el —lw,

9”‘2(1‘1) el — W,

g’ka(A) €y — Y1 -
Let k4, k,, k3 be minimal with respect to this property.

Problem 3.3. Estimate the values of ky, k,, k5. Do the values of k, k,, k3 depend
on the choice of the set A€}y — Jyy and on the particular model of ZF (ZFU) we
are working with?

3.6. Reflections on compactness. The notion of compactness is widely used in
different mathematical theories. It is strongly connected with the notion of finiteness.
It is natural to call a topological space F-compact if every open cover contains an
F-finite subcover (F-finiteness stands for any reasonable definition of finiteness).

Example. Assume that A€ )y, — J;;. Then the discrete space (4, 2(4)) is
IV-compact and not II-<compact. Indeed, #(4) is IV-finite and any subset of a IV-
finite set is IV-finite and moreover, the covering {{a}: a € A} is an open cover without
any IIfinite subcover.

Several natural problems arise:

Problem 3.4. (i) Describe pairs of Fy-finiteness and F,-finiteness such that there
exists (consistently) an Fi-compact space which fails to be F,-compact.

(ii) Describe topological properties of F-compact spaces and give their charac-
terizations.

Let & be a logic with its language and sy 1tax formalized in set theory (or in a model
of ZF, ZFU). Then £ is said to be F-compact provided for every theory  in &
there is a model if and only if every F-finite subtheory , < Z has a model.

In an oral communication (answering our question), H. G. Woodin conjectured
that in the very Fraenkel-Mostowski model the first order predicate calculus is
Dedekind-compact and not I-compact.
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3.7. Vector spaces. As an illustration of a possible application of different phenomena
of finiteness in the absence of the Axiom of Choice repeat the following example.

Example. Assume that A€}y — J;. Define S = {f: A - Real; {a: f(a) + 0}
is Ifinite} and operations coordinatewise (f + g)(a) = f(a) + g(a), (k.f)(a) =
= k. f(a). The space S has an F-finite base, namely {e,: a € A}, where e,(a) = 1
and e,(b) = 0 for b = a. S has no Ifinite base. Suppose on the contrary {c,,...,c,} S S

is a base. Then B = U {a: ¢,(a) + 0} is a Ifinite set. So, take ae 4 — B, then e,
i=1

is not a combination of cy, ..., ¢,.
Recently A. Blass has proved that if every vector space has a base then AC holds.

References

[1] A. Blass: Existence of bases implies the axiom of choice. In J. E. Baumgartner, D. A. Martin,
S. Shelah editors. Axiom. Set Theory. Contemporary Mathematics 37 (1984) 31— 33.
[2] J. D. Halpern, P. E. Howard: Cardinals m such that 2m = m. Proc. Amer. Math. Soc. 26
(1970) 487—490.
[3] J. D. Halpern, P. E. Howard: Cardinal addition and the Axiom of Choice. Bull. Amer.
Math. Soc. 80 (1974) 584— 586.
[4] T. Jech: Eine Bemerkung zum Auswahlaxiom. Casopis Pést. Mat. 93 (1968), 30— 31.
[5] T. Jech: The Axiom of Choice. Studies in Logic and the Foundation of Mathematics 75,
North Holland, Amsterdam 1973.
[6] T. Jech, A. Sochor: Applications of the ©®-model. Bull. Acad. Polon. Sci. 16 (1966) 351— 355.
[7] A. Levy: The independence of various definitions of finiteness. Fund. Math. XL VI (1958)
1—13.
[8] A. Levy: Basic Set Theory. Q Perspectives in Mathematical Logic. Springer-Verlag 1979.
[9] A. R. D. Mathias: Surrealistic landscape with figures (a survey of recent results in set theory).
Periodica Math. Hungarica 10 (1979) 109—175.
[10] G. Sageev: An independence result concerning the Axiom of Choice. Ann. Math. Logic
8 (1975) 1—184.
[11] G. Sageev: A model of ZF in which the Dedekind cardinals constitute a natural non-
standard model of Arithmetic. To appear.
[12] W. Sierpinski: Cardinal and ordinal numbers. PWN, Warszawa 1958.
[13] L. Spisiak: Definitions of finiteness. To appear.
[14] A. Tarski: Sur quelques théorémes qui équivalent 4 I’axiome du choix. Fund. Math. 5 (1924)
147—154.
[15] A. Tarski: Sur les ensembles finis. Fund. Math. 6 (1924) 45—95.
[16] J. Truss: Classes of Dedekind finite cardinals. Fund. Math. To appear.

Authors’ addresses: L. Spisiak, 041 54 Kosice, Jesenna 5, Czechoslovakia (Univerzita
P. J. Safarika); P. Vojta§, 041 54 Kosice, Jesenna 5, Czechoslovakia (Matematicky tstav SAV).

397



		webmaster@dml.cz
	2020-07-03T06:17:49+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




