[4] Gheorghiu N.:
A contraction mapping theorem in uniform spaces. St. Cerc. Mat. Acad. R. S. Romania 19 (1967), 131-135 (in Romanian).
MR 0247498
[5] Niezky St. L:
On a fixed point theorem in complete uniform spaces. Anal. St. Univ. 'Al. Cuza', Iasi, 14 (1968), 391 - 397 (in Romanian).
MR 0254829
[6] Reinermann J.:
On a fixed point theorem of Banach-type for uniform spaces. Mat. Vesnik, 6 (21), (1969), 211-213.
MR 0268879 |
Zbl 0181.26201
[7] Gheorghiu N., Rotaru E.:
A fixed point theorem in uniform spaces. Anal. St. Univ. 'Al. Cuza', Iasi, I-a, Math. 18 (1972), 311-314.
MR 0336726 |
Zbl 0248.54053
[9] Ivanov A. A.:
Fixed points of mappings in metric spaces. Investigations on topology II. Math. Institut 'V. A. Steklov' - Leningrad, 'Nauka', Leningradskoe otdelenie (1976), p. 5-102 (in Russian).
MR 0467711
[11] Rus. I. A.:
Metrical fixed point theorems. Univ. of Cluj-Napoca (R. S. Romania), (1979).
MR 0578918 |
Zbl 0506.54037
[12] Köthe G.:
Topological vector spaces I. Springer-Verlag, Berlin, Heidelberg, New York (1969).
MR 0248498
[13] Browder F. E.:
On the convergence of successive approximations for nonlinear functional equations. Indag. Math. 30 (1967), 27-35.
MR 0230180
[15] Millionchikov V. M.:
On the theory of differential equations in locally convex spaces. Math. Sbornik, 57 (99), No 4, (1962), p. 385-406.
MR 0156070
[16] Deleanu A., Marinescu K.:
Fixed point theorem and implicit functions in locally convex spaces. Revue Rom. Math. Pure et Appl., 8, No. 1 (1963), 91 - 99.
MR 0156174
[17] Hadzic O., Stankovic В.:
Some theorems on the fixed point in locally convex space. Publ. de l'Institut Math., Beograd, 10 (24), (1970), 9-19.
MR 0281070
[18] Hadzic О.:
Existence theorems for the system x = H(x,y), y= K(x,y) in locally convex spaces. Publ. de l'Institut Math. Beograd, 16 (i(9), (1975), 65-73.
MR 0355702
[19] Hille E., Phillips R.: Functional Analysis and Semigroups. XXXI, Amer. Math. Soc., Providence, RI, 1956.
[20] Kwapisz M.:
On the existence and uniqueness of L-integrable solutions of a certain integralfunctional equation. Funkcialaj Ekvacioj (19) (1976), 191 - 202.
MR 0447994
[21] Angelov V. G., Bainov D. D.:
Existence and uniqueness of the global solution of the initial value problem of some class of functional differential equations of neutral type in Banach space. Acta Mathematica Academiae Scientiarum Hungaricae, v. 37, 1-2, (1981) (in Russian).
MR 0616882
[23] Zverkin A. M.:
On the definition of notion of solution for the equation with deviating argument of neutral type. Trudy seminara po teorii diff. uravnenii s otklonjayuschimsja argumentons, Moscow, 4 (1967), 278-283 (in Russian).
MR 0213686
[24] Angelov V. G., Bainov D. D.: Existence and uniqueness of the global solution of some integral functional equations in $L^p$-space. Anal. Stint. Univ. 'A1 Cuza', Iasi, 25, 1, (1980), 77-83.
[25] Kuczma M.:
Functional equations in a single variable. Monografie Matematyczne, v. 46, PWN, Warszawa, 1968.
MR 0228862 |
Zbl 0196.16403