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FIXED POINT THEOREM IN UNIFORM SPACES
AND APPLICATIONS

VasiL G. ANGELOV, Sofia

(Received June 1, 1983)

The present paper deals with fixed point theorems in uniform spaces (Section I)
and their applications to the existence-uniqueness problem for nonlinear functional
differential equations of neutral type, with unbounded deviations (Section II).
Since the uniform spaces form a natural extension of the metric spaces, many results
in this direction have appeared in the last years. We shall mention only some of them
[1]-[8].

It is known that every topological vector space is completely regular and therefore
uniformisable. If E is a locally convex space with a saturated family of seminorms
{Pa}aca then we can define a family of pseudometrics g,(x, y) = p{x — y). The
uniform topology obtained coincides with the original topology of the space E.
Therefore, as a corollary of our results, we obtain fixed point theorems in a locally
convex space.

We note that the known results in metric spaces are not applicable to the problems
in Section II (cf. the survey papers [9], [10], [11]).

L

Further on we denote by X a Hausdorff sequentially complete uniform space with
uniformity defined by a saturated family of pseudometrics {0,(X, ¥)}ses» 4 being
an index set (cf. [12]).

Let ® = {®,(t): x € A} be a family of functions &,(t): RL — R} (R} = [0, o))
with the properties

1) &,(¢) is monotone non-decreasing and continuous from the right on R},

2) @,(f) <t forall t >0, and j: A > A is a mapping on the index set 4 into
itself, where j%(a) = o, j*(«) = j(j*7*(«)); k is a positive integer.

Definition 1. The map T: M — M is said to be a @-contraction on M if

Qa(Tx, Ty) é ¢a(gj(a)(x’ y))
for every x, ye M and e 4, M < X.
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Definition 2. The set M < X is bounded if it is bounded in every pseudometric ¢,,
that is, ¢ = sup {g,(x, y): x, ye M} < o0.

Definition 3. We shall say that ®,(t) is a ®-function if it belongs to the family ®.

Theorem 1. Let the following conditions hold:
1. The operator T: M — M is a ®-contraction on the totally bounded and closed
set M = X, where X is also quasicomplete (cf. [12]).
2. For each we A there exists a ®-function @,t) such that sup {®@.(1): n =
=0,1,2,..} £ &,(t) and @y £ 02 (n=0,1,2,...).
Then there exists a unique fixed point x € M of T, such that x = lim T"x, in-
dependently of the choice of x,€ M. noe

Proof. We define the sequence x, = Tx,—; (n =1,2,3,...) with an arbitrary
X, € M. We shall show that {x,};2, is a Cauchy sequence.

Let 02 be the diameter of M in the pseudometric g,(x, ). By condition 1 of
Theorem 1 we have

2,(Xs, xl) = Qa(T"s—laTxl—1) = ¢a(gj(az)(xs~l’ Xi- 1))
forall s,/ = 1.
If we set ¢ = sup {¢,(x,, x,): 5, | = n}, then by the monotonicity of ¢, we obtain
Z = sup {(D (Q}(a{)(xs 15 Xp— 1)) S, I > n} =
= ¢4(5Up {Qj(a)(xsﬂa Xt—1)5 s, 1 = "}) s

IA

that is ¢X £ @,(ci®).
Further on, condition 2 of Theorem 1 implies

S 0,(e)) £ D,(P)(c Zm)) S o S BBy Pl ) ) £
= (pa((pj(a!)(' Jn- ‘(a)(ga) )) (p:(gg) ’

P)(1) = D(D,(... D,(1))) is the n-th iterate of B,(1).

Let us set d = &)(0)). We obtain d = &,(d;_,) < di_,, di = 0. Therefore the
limit lim d} = d* exists and d* = 0.

The right continuity of @,(r) implies lim &,(d;_,) = &,(d*) and hence d* < &,(d”).

But @,(1) < t for t > 0, hence we obtain d* = 0. On the other hand, ¢? < di. There-

n =

fore lim¢} = 0, i.e. {x,};2, is a Cauchy sequence. Since the uniform space X is

n—om
sequentially complete, there exists an element x € X such that lim x, = x. But X
is quasicomplete. Consequently, x € M. e

An element x € M is the required fixed point of the operator T. Indeed, gd(x, Tx) =<
< 0x, x,) + 0x,, Tx) £ 0,(x, x,) + @,(0;(s(X,—1, X)) and when n — o0, we have
0.(x, Tx) = O for every a2 € 4 and consequently, x = Tx.

Now, let x and y be two solutions of the equation x = Tx. Then we have the in-

where
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equalities
2%, ¥) = 2T, Ty) £ B,(0j(X, ¥)) =
= B (0;(T% TY)) £ . £ 8Py Ppu-i(@2) ) = Fylel)
Bearing in mind that lim @"(Qa) = 0 we conclude that Qa(x y) = 0 for every x € A4,

n—>o

i.e. x = y. Thus Theorem 1 is proved.

Corollary 1. Let the conditions of Theorem 1 hold with the assumption 1 replaced
by
QJ(TSX, TSJ’) g ¢az(gj(az)(x7 y))

for some positive integer s. Then T has a unique fixed point.

Proof. The operator T° satisfies all conditions of Theorem 1 and therefore T°
has a unique fixed point x, i.e. T°x = x. But T(T*x) = T%(Tx), Tx = T%(Tx) and Tx
is a fixed point of T®. Since x is unique, we obtain x = Tx, which completes the
proot.

If the operator T: X — X maps all the space X into itself, then we have the fol-
lowing result:

Theorem 2. Let us suppose
1. the operator T: X — X is a ®-contraction;
2. for each o€ A there exists a ®-function B,(t) such that sup {®u,(1): n
=0,1,2,...} < &,t) and B,(t)[t is non-decreasing;
3. there exists an element x, € X such that Qg (X, Txo) < p(@) < 0 (n =
=0,1,2,...).
Then T has at least one fixed point in X.

Il

Theorem 3. If, in addition, we suppose that
4. the sequence {Qjuy(X, ¥)}i%o is bounded for each o€ A and x, y € X, i.e.

0ol 3) = 4(x,,0) < 0 (k= 0,1,2,...).
Then the fixed point of T is unique.

Proof of Theorem 2: Let us introduce the sequence ¢ = o (Tn*', Ty) for
xo€X (n=0,1,...). Then we obtain

e S P T Teg 1)) £ oo = BB+ Pinm 1) (@i TXos Xo) =
S DY Py Bju-10y(P() ) = By(p(2)) =" b5,

and the inequalities

Qa(xm+p9 m) = Z@z( Xm+p—i+1s Xm+p— ) = Z(’m+p P = Z bm+p i
together with
brsa[by = B(B(p())/Bi(p(2)) = B.(p(#))/p(x) < 1

imply that {x, = T"xo};; is a Cauchy sequence, which completes the proof of
Theorem 2.
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The proof of Theorem 3 is analogous to that of Theorem 1.

Corollary 2. Under the assumptions of Theorems 2 and 3, the operator T: X — X
has a unique fixed point x if for some positive integer s, T° is a P-contraction
(instead of T).

Let us note that the condition &,(f) < t is restrictive but implies Y b} < co.
Nevertheless, Theorems 2 and 3 are useful for the application (see Sec. II of the
present paper). In Theorem 4 we shall show that if j: 4 — A is surjective and
O Xmtms Xm) = Cjiy(Xmn> Xm) for all e A (m, n 2 0) and some x, € X, then con-
dition 2 of Theorem 2 may be weakened.

Theorem 4. Let us suppose:

1. the operator T: X — X is a ®-contraction;
2. for each ae A, lim (D¢ (... Pjn-1(?) ...)) = 0,1 > 0;
n-* oo

3. the mapping j: A — A is surjective and QX+ 1> Xm) = Qi Xm+ns> Xm) fOr sOme
xo€X (xed; myn 2 0).

Then there exists at least one fixed point of T, i.e. x = Tx. If we add the conditions
_of Theorem 3, then x is unique.
Corollary 3. Under the assumptions of Theorem 4, if T® is a ®-contraction, then T
has a unique fixed point.

Proof of Theorem 4. Introduce the sequence cj = g,(x,+1, X,) for an element
xo € X and set p(a) = @,(xo, Tx,). Then we obtain

o = 20T Tog 1)) = Pul o+ - Bjo-16(@m(¥0s T¥0)) -.)) £

S BBy Po-10a(P(¥)) ) -
Consequently, lim ¢ = 0 for all a € 4.

n—o

If we suppose that {x,};, is not a Cauchy sequence, then there exists g, > 0
and a finite number of pseudometrics {¢,} such that for every v we can find m(v) > v
and p(v) > 0 for which @,(X,+,» Xnm) = €. But j is surjective and we conclude that
there exists « such that o’ = j(«) and

Qa(xm-l-p’ xm) = Qj(ac)(xm+p> xm) = &g«
Let p be the smallest positive integer for which
Qi(a\(xmﬂ‘v xm) =gy, le. Qj(a)(xm+ﬁ—1a xm) <é&.
Let us set ki@ = g;,(T™"Px, T"Xo). Then
go < M@ = 0, (T"*Pxy, T"Xo) £ Qi T"*Px0, T"*P7x0) +
+ 0ja(T™ P %0, T"Xo) < )51 + &0 -

Passing to the limit in the last inequality for v — oo, we obtain lim h/® = &g,.

V=0
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On the other hand, we have
g0 S 0,(T™* Px,, Tmxo) S O(Tm*P+1y T™*Px,) +
+ o (T™*P+1x,, T™ 1xo) + &(T™Hix Ty ) < Covp +
+ B,(0;(T™+Pxq, T™%0)) + Cn < ¢, o + B (W®) + ¢,
which yields (by v — o) g, < @,(g,). The contradiction obtained proves the existence

of a fixed point of T.
If x and y are two fixed points of T We have

0%, ¥) £ PPy Pr-10(a(x, y, @) ..))), de. x=y.
Theorem 4 is thus proved.

Remark 1. Theorems 1 —4 with generalized contraction conditions are analogues of
the theorems of Krasnoselskii [9], Browder [ 13] and Boyd-Wong [ 14] in metric spaces.

Remark 2. Theorems 1—4 generalize the known results in uniform ([4], [g])
and locally convex spaces ([15]—[18]).

Finally, we shall prove the following theorems:

Theorem 5. Let us suppose
1) for each o€ A and n (positive integer) there exists &, ,(t) € ® such that

Qa(T”x: T"J’) é ¢a,n(gj(a,n)(x= y)) for every X,y eX 5

2. there exists an element xo€X such that g, .(xo, Txo) < p(x) < o (n =
=0,1,...), YD,,(p(2)) < o0 and j: A x N - A.
n

Then T has at least one fixed point in X.

Theorem 6. If, in addition, we suppose that for every o€ A and x,y € X there
exists 0 < g(x, y, @) < oo such that
0 (%, ¥) S q(x,y,0) < 0 ; sup{®; ,():n=0,1,...} < B()e®

where j; = j(#, 1), j2 = j(j1> 1)s «vs ju = j(ju=151), ..., then the fixed point x is
unique.

Proof of Theorem 5. The fact that {T"x,}%, is a Cauchy sequence follows from
the inequalities

m .
Qa(Tm+nx0, Tnxo) é Z Qa(Tn+i_1(Txo), Tn+l—1x0) <
i=1

m m
§izl¢a,n+i— 1(@j(a,n+i— ,)(xo, Txo)) =< .ZIQa,n+i— 1(P(°‘)) .
< =
Then x = lim T"x, is the required fixed point. Indeed, ¢,(X, Tx) < 0(TX, X,+1) +

n->o0
+ 0u(Xnt15 X) < By 1(0500,1) (%5 X)) + QX 15 x) which completes the proof.

Proof of Theorem 6. If we assume, by way of contradiction, that x and y are
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two fixed points of T, then
2%, ¥) = &%, Ty) £ Pus(0ja,1y(% ) £ Pus(P1,1((%, ) = -

oo  Pon(By (e By a0 (%, 9)) ) = Palx, y, @)
for every o € A, or x = y. Thus Theorem 6 is proved.

II.

In this section we shall apply Theorems 2 and 3 in order to obtain existence-
uniqueness results for neutral functional differential equations.
Let us consider the following initial value problem (IVP):

B)  0) = Ft oA o 680, # (@0 o 9 G0)) s 150,

o) =v(), ¢ =v(), 10,
where the unknown function ¢(7) takes values in the Banach space B with a norm ||
The deviations A(?), 7/(f) (i = 1,...,m; I = 1, ..., n) are of mixed type and, in the
general case, unbounded. The derivative is taken in the strong sense [19]. By the
substitution x(z) = ¢'(¢) for t > 0 and 6(f) = Y'(¢) for t < 0, assuming ¥(0) = 0
(cf. [20]), we obtain the equivalent IVP:

3) x(t)=F<t, f:‘(')x(s)ds,..., J‘Am(t)x(s) s, x(‘tl(t)),...,x(*cn(t))), £>0

0
x(1) =06(r), t=<0.
Introduce the notations R = (— o0, ), R} = [0, o0), RL = (-0, 0],
R, =R, x...xR., BP=Bx..xB.

L - (ST ——
n n

We shall adopt the following assumptions:

(C1) The functions A(f): Ry > R* (i=1,...,m); 7(¢): Ry > R* (I=1,...,n)
are continuous and A,0) < 0, 7,(0) < 0.

We shall look for a solution of the IVP (3’) in the space C(R'; B) consisting of all
continuous functions f(f): R' —» B. It is known that the family of seminorms
pr(f) = sup {||f()]: t e K} (where K runs over all compact subsets of R') defines
a locally convex Hausdorff topology of the space.

Let us first define the map j: A +—> A. In this case the index set 4 consists of all
compact subsets of R'. Let K = R' be an arbitrary compact set. Then the set j(K)

m
is defined in the following way: if K, = K n (0, ) * 0 we set j(K) = (U K, ) v
n i=1
v (UK,)andif K, = 0, then j(K) = K. Here we have
1=1

[A,A;] when 0e[A,A],
Ky, =14[0,A;] when A;20,
[A,0] when A; =<0,
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where A; = inf {A(f): te KN RL}, A, = sup {A(t):teKnRL} (i=1,2,...,m),
K., 11,(t) teKn Ry} (I=1,2,...,n). Since the functions A(f), 7,(t) are con-
tinuous the set J(K) is also compact The map j%(K) is defined inductively, i.e.
J'(K) = j(j""'(K)), n a positive integer.

(C2) The function F(t, uy, ..., Uy, vy, ..., 0,): R} x B"*" — B is continuous and
satisfies the conditions
]F(t Ugyoos U U) (t Ugyouny Upy Dyyenny U)”
< Q1 "u1 . ”u,,, - u,,,”, oy — s s o, — Ba])

where the function Q(f, Xy, ..., X, Vg5 ... ¥o): RGP 5 R is continuous in 1,
non-decreasing and continuous from the right in x;, y;,, Q(t, ay, ...,ay, y, ..., y) < y
for every constant @ > 0 and Q(¢t, ay, ..., ay, y, ..., y)|y is non-decreasing in y.

It follows from (C2) that

sup {Q(t,ay, ...,ay, y,...,y):te KN R, + 0},
@K(y) = 1 _
0 when KNnR, =90
is continuous from the right, non-decreasing and @K(y) < y for y > 0 for any com-
pact K = R*, and ®,(y)/y is non-decreasing.
(C3) The initial function O(f): RL — B is continuous and satisfies the conformity
condition

0(0) = F<0, f o) ds, ..., J:'"( 6(s) ds, 0(c1(0)), (0)))

]

(C4) The functions A1), 7,(f) have the following property: for every compact
K < R’ there exists a compact K such that j(K) = K (n = 0,1,2,...).

Remark 3. As can readily be seen, assumption (C4) implies @ u,(y) < Px(),
i.e. condition 2 of Theorem 2 is satisfied.

Remark 4. Assumption (C4) has an implicit form. It is easy to verify that if the
functions A7), 7,(f) are delays, i.e. A7) < ¢, 7,(t) < t, then (C4) is satisfied. For
example, if A(f) = —t, 7,(f) = ¢t — 2, then j([0,2]) = [—2,0] and j%([0,2]) =
=[-2,0], n=0,1,2,... since [—2,0]n (0, 0) = 0. Assumption (C4) also
allows for more complicated functions A7), 7,(¢) as for instance

Jt, 0511
1+Jt-1), 1152

Theorem 7. If assumptions (C1)—(C4) are satisfied, then there exists a unique
continuous solution x(f) of IVP (3').

Proof. Let X be the uniform sequentially complete Hausdorff space consisting
of all continuous functions f(f): R* — B which are equal to 9(r) for te RL, with

25



a saturated family of pseudometrics

ex(f, 9) = sup {[f(t) — g(9)]: te K},
where K runs over the compact subsets of R*,
The operator N: X — X is defined by the formulas

A1(t) Am()
() () = F(t, . f(s) ds, ...,L f(s)ds,f(rl(t)),...,f(q;,,(t))) , t>0,
0r), t<0

where fe X.

Since the function (Nf) (£) is continuous (as a composition of continuous functions),
the operator N maps the space X into itself.

By assumption (C4) we have
2jn0(05 No) = sup {||F(t,0,...,0,0,...,0): t e j3(K)} <
< sup {||F(t, ...)|: te K4} = ex(o, No)

a(t) _ o, t>0,
(), t=0,
that is, condition 3 of Theorem 2 is fulfilled; j%(K) = R} N J(K), Ky = RinK.

We already gave an explicit form of the mapping j: A — A so that we are now able
to show that the operator N is a @-contraction.

Let K = R! be an arbitrary compact set and f, g € X. Then for te K n R} we
obtain

INF) (1) = (Ng) ()] < (1, [As(0)]| sup {|f(s) — g(s)]: s e Kn} s oo
|A(5)] sup {[|f(s) — g(s)|: s €Ka,}, sup{[f(t) = g(t)]:teK,}. ...,
sup {[£(t) — 9(1)]: teK.}) = Qt, Ay sup {[|f(s) — g(s)]|: s €J(K)}, ...,
A, sup {|£(s) = g()]: s ei(K)}, sup {[£() — 9(&):] tei(K}, ..,
sup {|£(2) — g(0)]|: € J(K)}) = QA Bojix(S 9) , .-
Ko 1. 9) Qi(fs 9)s - e Qj(K)(f ,9)) qu(Qj(K)(f ,9)) >

where

where

A =max{A, A, .., A}, A =sup{|AfD)]:teK} (i=1,2,...,m).
For te K n RL we have

INF) (1) = (Ng) (9] = 0.
Having in mind the definition of the function @(f) (cf. (C2)) we conclude that
ox(Nf, Ng) < @x(e;(f, 9)) -
Assumption (C4) implies that
Bnx(y) S Px(y) = Pxlv) € @
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and
eimio(fs 9) £ ex(f, 9) = a(f, 9, K) < 0.

Since all conditions of Theorems 2 and 3 are satisfied, we may assert that there is
a unique solution x(f) € X of IVP (3').

Theorem 7 is thus proved.

Let us compare it with some related results. It is well known (cf. [20]) that the
Lipschitz constant I in the equation y'(f) = Iy'(<(t)) + h(1), »(0) =0, (1) < ¢
must satisfy the condition ll[ < 1 in the case ¢(f) = t for some values of ¢. If we
seek a global solution of the IVP

V() =10 y((0) + h(t), t>0, Y@ =y'(), t<0

with a deviation 7(f) of mixed type and unbounded, the results of the paper [21]
imply that if y/(z) is bounded and continuous and I < 1, where I = sup {|I(?)[:
te R.}, then there exists a unique solution y(f) with a continuous and bounded
derivative. Theorem 7 of the present paper guarantees existence and uniqueness of
a global solution with a continuous derivative, which is not necessarily bounded,
i.e. the solution belongs to a more general class of functions. Besides, we have
existence and uniqueness even in the case when |l(t)|'< 1, but I = 1. For example,
the IVP
y(¥)

¥(2)

has a unique solution although I = sup {1 — e~*: t€ R} }. The solution is y(f) = e".
Let us note that condition (C4) restricts the class of the deviations A1), 7,(t)
when they are of advanced type, A{(f) 2 ¢, 7,(f) Z t. But it is known [22] that without
a restriction on the magnitude of the advancement we have neither existence nor
uniqueness.
It is easy to formulate theorems for existence and uniqueness of the solution for
nonlinear functional equation

o(t) = F(t, o(t4(2)), ..., o(z,(2))), t>0,
o(t)=10(), t<0

because this equation is a particular case of (3').

As another application we shall seek a generalized solution of IVP (3') in the
space LY(R'; B), consisting of all strongly measurable functions f(¢): R' - B,
which are locally essentially bounded. It is a locally convex Hausdorff space with

a topology defined by the neighbourhoods of zero
U, ={feL3(R:B): |fli<&....|f]. <e}s

Ifll: = esssup {|f(1)]: teE} (i=1,....,n), {E}}-,

is a finite system of compact subsets of R1.

It

1—e)y(=t)+ef—et+e?, t>0
(
e, y({t)=¢e, t<0

Il

where
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We introduce the following assumptions:

(M1) The functions Af?), 7,(f): Ry - R (i = 1,...,m; [ = L, ..., n) are measur-
able and map every bounded set into a bounded set. Since the index set A coincides
with the totality of all compact subsets E = R!, we are now going to define the map
jiA— A. The set j(E) is defined in the following way: if E, = En (0, o0) * 0,

then we set j(E) = (|J Ex,) U (U E,,), and if E, = 0, then j(E) = E where
i=1 1=1

[A,A;] when 0€e[A,A],

[0,A;,] when A; =0,

[A;, 0] when A, =0,
A = essmf{A(t) teE}, A, = esssup {A(l): teE}, E, = r,(E) (i=1,
l= ., n). If the set j(E) is not closed, then we set j(E) = cl [( U Ex) L ( U Er,)]

=1

(i.e. ](E) becomes a compact). The map j(E) is defined 1nduct|v1vely, ie. ] (E)
= j(j"~(E)), n positive integer.

(M2) The function F(t,uy,...,U,, vy,...,0,): R} x B"™" - B satisfies the
Carathéodory condition (measurable in t and continuous in uy, ..., U, Uy, ..., v,,)
and the conditions

Ittt 20 5 0 o ol o o
| wes Uy Vg aeny Uy) — F(t,ﬁl, coes By Byy oo B)| S
< Qt, luy — @y, ... [t — iy - Hv,, = 5,[),
where the functions @(f, Xy, ..., Xy V15 ooy 1)y @ty Xgy ey Xy Visoony V)t RETHE

— R% satisfy the Carathéodory condition. They are nondecreasing in x;; y;, and for
any fixed (Xy, ..., Xy Vg5 --0s V) € RE",
Oy Xgs ees Xy V1o ooos Vs Q%5 X0 ooy Xy Vs ovvs Vi eL‘}‘;c(RJ,)
Besides, the function
Qu(y) = esssup {Q(t, ay,...,ay, y, ..., y): te E}

(when mes E, > 0) is continuous from the right and Q;(y)<y, y> 0 for any compact
set E = R' and for any constant a > 0; Q,(y) = 0 when E, = @ or mes E, = 0,
and Q(y)/y is non-decreasing.

(M3) The initial function O(f) e LY(RL; B).

(M4) For every compact set E, there exists a compact interval E < R such that
J(E)SE n=012,...

Theorem 8. If the assumptions (M1)—(M4) are satisfied, then there exists a unique
solution x(t) e L (R'; B) of IVP (3").

Proof. Let X be the uniform space Which consists of all functions f € LY (R'; B)
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equal to O(f) for 1 e R., with a saturated family of pseudometrics gg(f, g) =
= ess sup {[|f(£) — g()]: € E} where E is an arbitrary compact subset of R™.

The space 2 = P(R*; B) (consisting of all infinitely differentiable functions with
compact support) is dense in X.

The operator N: & — X is defined by the formula

A1 (1) Am(1)
F(t, J' f(s)ds,...,J 1) ds, £(e1(0), - f(t,,(t))), >0,

o), t<0

(Nf) (1) =

where fe 2.

Since the function f(f) € 2 is continuous, the compositions f(7,(¢)) (I = 1, ..., n)
are strongly measurable functions and therefore (Nf) (¢) is also a strongly measurable
function. The estimate

I(NF) (1)]| £ oft, Ay esssup {||f(1)]|: t€ E}, ..., ess sup {||f(2)|: t € E. })

shows that the operator N maps & into X.
The operator N is a @-contraction. Indeed, if E = R! and f, g € &, then for
te En R, we obtain

(Nf) (1) — (Ng) (1)]] < Q(, |Ay(0)] ess sup {[[f(s) — g(s)]|: s € Ea,} -,
|A(1)| ess sup {||f(s) — g(s)]|: s€ Ea,}, ess sup {|f(1) — g(1)]: t€E.}, ...,
esssup {| /(1) — g(1)|: t€ E.)}) £ Qt, Aojwy( [ 9)s ---» Doy ([ 9)
;e(f 9). - Qi (S, 9) = Qulesm(f: 9)) »
where A = max {A,, A,,...,A,}, A, = esssup {|A(¢)]: te E} (i =1,..., m).

Therefore
QE(Nfa Ng) = QE(Q;(E)(f, g)) .

The operator N is uniformly continuous. Since it is defined on a dense set 2,
we may employ Theorem 4 [12], p. 33. The resulting extension on X we denote again
by N. The operator N satisfies the conditions of Theorems 2 and 3. The conclusion
of the present theorem is obtained in the same way as that of Theorem 7.

Remark 5. In [23] Zverkin has proved that the existence of an absolutely con-
tinuous solution of the neutral equation implies measurability of the functions
A{1), T/(t). In the known results (see [20], [24] and references theirein), 7,/ ) has the
following additional property: the inverse image of every null set is measurable.
Here this additional condition is superfluous. As the proof of Theorem 8 shows,
a basic role is played by the uniform continuity of the operator defined by the right-
hand side of the equation (3'), and in fact, the extended operator yields the solution.

In order to illustrate the generalized solutions of (3’) which may be obtained by
means of Theorem 8, we give a simple example. Its solution may be constructed in
an explicit form by the step method.
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Indeed, the IVP

(o) x(t=1) + 1, 150, af)=1-1, n—2=r<n—1(n=23..),
=10, _1<t<o0, !

1, t=0

possesses the solution

(1, 0Zt<1,
1-H+1, 15t<2,

x(1) = u—%ﬂl—a”(l—:%§4w1—%u~%yuo— ! )+“

n+2

“+<L—l )+1=ﬁ119+1,n§t<n+L
| n+2 2(n +2)

In this example the discontinuity of the initial function induces discontinuities
of the solution. Let us note that off) < 1 but ess sup {o(t): te Ry} = 1.

It is easy to verify that Theorem 8 implies existence and uniqueness of the solution
x(t) e L} (R; B).

Toc!

As a consequence of Theorem 8 we obtain new existence — uniqueness results
for the nonlinear functional equation (4) in the space L7, (R"; B). It is known ([25],
pp. 44—45) that the problem of uniqueness of the solution is very important in the _

theory of functional equations.
Finally, we formulate conditions for existence and uniqueness of a solution of

IVP (3') belonging to Lj,(R"; B). ,
Let us suppose
(L1) The functions Aft), 7,(t): R} — R are measurable and map bounded sets

into bounded sets; 7,(¢) have the property

[ Ireonars k] ropa
E <(E)
for any continuous and bounded function f(t) and any compact E c RY, kis
a constant. The mapping j: A — A is defined as in (M1).
(L2) The function F(t,uy,...,v,): Ry x B"*" > B satisfies the Carathéodory

condition and
(st ot 010 9)] S (D) + (5 ] + 3 o)
[F(t 1 ooy ths 1, ooy 0) = F(t, g, oy T By s B)| S
o) 3 o= 7] + B3, o~

where (1), a(t) € Li,o(R}; R}), wy, B > 0 are constants.

lIA
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Besides, for every compact E = RY,

mf o) dt + npk < 1.
(L3) 0(1) e LL(R"; B). :

loc!

( (L4) For every compact E = R! there is a compact E such that jE) = E
n=012..).

Theorem 9. Under the assumptions (L1)—(L4), IVP (3') has a unique solution
x(7) € Li,((R*; B).

Proof. Let X be the uniform space of all f e L} (R*; B) which equal O(1) for a.e.
teRY, with a saturated family of pseudometrics 0x(f; 9) = [ [|f(t) — g(?)] dt
where E runs over compact subsets of R'.

The set % = {f e Lj,,(R"; B): f is bounded and continuous} is dense in X. The
operator N: #% — X can be defined as in the proof of Theorem 8.

The estimate

) 0 = )+ [ £, |

i=1JE
shows that Nfe X.
The operator N is a ®-contraction. Indeed,

[ 100 @ - woy@acs £ [ 0

LGRS

dt +

Ai(t)
j 1) — a(s)] ds

+ B Z1kj [£(2) = g(n)] dr < I:mj ot) dt + nﬂk] oiw(f. 9) -
1= T1(E) E
Further on, the proof can proceed as that of Theorem 8.
Example:
di)x(t—1), 120, af)=1-—— (n=12.),
= n n—1=t=n.
*(1) V1), -1=st<0, -
L1, t=0.
Then the solution x(7) € L} (R} ) has the form
F ! 0= 1
N . a1 =t<l1,
2~ 1]
21—1—, 15t<2,
x(1) = 32Jr -2
n n—1 1 1 t<n
n+1 n 2t—n| - ’
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