Previous |  Up |  Next

Article

References:
[1] P. Alles: Estimation of the Dimension of Some Types of Graph by Means of Orthogonal Latin Squares. Preprint-Nr. 749, TH Darmstadt, 1983.
[2] P. Alles: On the Dimension of Sums, Amalgams and Weak Products of Graphs. manuscript, 1983.
[3] P. Alles: The Dimension of Sums of Graphs. in: Discrete Math. 54, 1985, p. 229-233. DOI 10.1016/0012-365X(85)90083-4 | MR 0791663 | Zbl 0581.05048
[4] P. Křivka: On the Dimension of Odd Cycles and Cartesian Cubes. in: Coll. Math. Soc. J. Bolyai 25, 1981, p. 435-443. MR 0642056
[5] P. Křivka: Dimension of the Sum of Two Copies of a Graph. in: Czech. Math. J. 31 (106), 1981, p. 514-520. MR 0631599
[6] L. Lovász J. Nešetřil, A. Pultr: On a Product Dimension of Graphs. in: J. of Comb. Theory, В 29, 1980, p. 47-67. MR 0584160
[7] J. Nešetřil: Representations of Graphs by Means of Products and their Complexity. in: Mathematical Foundations of Computer Science, LN in Comp. Sci. 118, 1981, p. 94-102: MR 0652742
[8] J. Nešetřil, A. Pultr: A Dushnik-Miller type Dimension of Graphs and its Complexity. in: Fundamentals of Computation Theory, LN in Comp. Sci. 50, 1977, p. 482-493. MR 0491363
[9] J. Nešetřil, A. Pultr: Product and other Representations of Graphs and Related Characteristics. in: Coll. Math. Soc. J. Bolyai 25, 1981, p. 571 - 598. MR 0642062
[10] S. Poljak, A. Pultr: On the Dimension of Trees. in: Discrete Math. 34, 1981, p. 165-171. DOI 10.1016/0012-365X(81)90064-9 | MR 0611429 | Zbl 0476.05075
[11] S. Poljak, A. Pultr: Representing Graphs by Means of Strong and Weak Products. in: Comm. Math. Universitatis Carolinae 22, 3, 1981, p. 449-465. MR 0633576 | Zbl 0476.05074
[12] S. Poljak, V. Rödl: Orthogonal Partitions and Coverings of Graphs. in: Czech. Math. J 30 (105), 1980, p. 475-485. MR 0583626
[13] S. Poljak, D. Turzik: A Note on Dimension of $P_{3}^{n}$. in: Czech. Math. J. 31 (106), 1981, p. 484-487. MR 0626922
Partner of
EuDML logo