Previous |  Up |  Next

Article

References:
[1] M. Behzad G. Chartrand, and L. Lesniak-Foster: Graphs & Digraphs. Prindle, Weber & Schmidt, Boston 1979. MR 0525578
[2] F. Harary: Graph Theory. Addison-Wesley, Reading (Mass.) 1969. MR 0256911 | Zbl 0196.27202
[3] N. P. Homenko N. A. Ostroverkhy, and V. A. Kusmenko: The maximum genus of a graph. (in Ukrainian, English summary), $\varphi$-peretvorennya grafiv (N. P. Homenko, ed.) IM AN URSR, Kiev 1973, pp. 180-210. MR 0351870
[4] M. Jungerman: A characterization of upper embeddable graphs. Trans. Amer. Math. Soc. 241 (1978), 401-406. MR 0492309 | Zbl 0379.05025
[5] L. Nebeský: A new characterization of the maximum genus of a graph. Czechoslovak Math. J. 31 (106) (1981), 604-613. MR 0631605
[6] L. Nebeský: A note on upper embeddable graphs. Czechoslovak Math. J. 33 (108) (1983), 37-40. MR 0687415
[7] L. Nebeský: On a diffusion of a set of vertices in a connected graph. In: Graphs and Other Combinatorial Topics (Proc. Third Czechoslovak Symp. Graph Theory held in Prague, 1982) (M. Fiedler, ed.), Teubner-Texte zur Mathematik, Band 59, Teubner, Leipzig 1983, pp. 200-203. MR 0737038
[8] E. A. Nordhaus R. D. Ringeisen В. M. Stewart, and A. T. White: A Kuratowski-type theorem for the maximum genus of a graph. J. Combinatorial Theory 12 В (1972), 260-267. DOI 10.1016/0095-8956(72)90040-8 | MR 0299523
[9] G. Ringel: The combinatorial map color theorem. J. Graph Theory 1 (1977), 141 - 155. DOI 10.1002/jgt.3190010210 | MR 0444509 | Zbl 0386.05030
[10] N. H. Xuong: How to determine the maximum genus of a graph. J. Combinatorial Theory 26 В (1979), 217-225. DOI 10.1016/0095-8956(79)90058-3 | MR 0532589 | Zbl 0403.05035
Partner of
EuDML logo