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By a graph we shall mean a pseudograph in the sense of books [1] and [2]. This
means that a graph L is determined if and only if its vertex set V(L), edge set E(L),
and its incidence relation between vertices and edges are known. Let L be a graph.
We denote by C(L) the set of its components; we denote ¢/L) = |C(L)|. If U = V(L),
then we denote by (U>, the subgraph of L induced by U.

Let G be a connected graph. Denote B(G) = |E(G)| — |V(G)| + 1. Consider
a 2-cell embedding & of G on an orientable surface of genus g such that & has r
regions. It is well-known (see Theorem 5.1 in [1], for example) that

(1) 29 +r=BG)+1.

The maximum integer k with the property that there exists a 2-cell embedding of G
on an orientable surface of genus k is referred to as the maximum genus yM(G) of G.
It was proved in [8] that y,/(G) = 0 if and only if no pair of distinct cycles of G has
a vertex in common. As follows from (1), y,/(G) < [B(G)/2]. (The maximum non-
orientable genus of a connected graph has also been studied; as was proved in [9]
the maximum nonorientable genus of G equals to (G).) We denote by ¢,,(G) the mini-

mum integer n with the property that there exists a 2-cell embedding of G on an
orientable surface which has n regions. As follows from (1),

(2) (G) = (B\G) — en(G) + 1)J2.

We say that G is upper embeddable if ,{G) = [B(G)[2]. According to (2), G is upper
embeddable if and only if ¢,(G) < 2.

Let G be a connected graph. We denote by x; the minimum integer k such that
there exists a spanning tree T of G with the property that for exactly k components F
of G — E(T), |E(F)| is odd.

The following result was proved in [3] and [10]:
Theorem A. If G is a connected graph, then ¢,(G) = xg + 1.

According to (2), Theorem A can be reformulated as follows:
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Theorem A'. If G is a connected graph, then yy(G) = (B(G) — Xc)/2.
In fact, both in [3] and in [10] Theorem A is formulated for 7,(G) but in [3] in
a rather different way.

Corollary A. A connected graph G is upper embeddable if and only if xg < 1.
Note that Corollary A was also proved in [4].

If Lis a graph, then we denote by b(L) the number of components F of L with the
property that (F) is odd. The next theorem was proved in [5]:

Theorem B. If G is a connected graph, then
xg = max (¢(G — A) + b(G — 4) — 1 — |4]).
ASE(G)

If we combine Theorem B with Corollary A, we get
Corollary B. A connected graph G is upper embeddable if and only if
(G — A) + b(G — A) — 2 < |A| for every A < E(G).

In the present paper we shall obtain two generalizations of Theorem B. If a grah G
is a spanning subgraph of a graph J, then we denote by (G, J) the set of graphs H
with the properties that G is a spanning subgraph of H and H is a spanning sub-
graph of J. Let G, J, and L be graphs; we denote by b&(L) the number of com-
ponents F’ of L with the property that B{(F’) is odd and E(F') < E(G); moreover,
we denote by bP(L) the number of components F” of L with the property that either
B(F") is odd or F” is not an induced subgraph of J.

The following theorems are the main results of the present paper:

Theorem 1. Let G and J be graphs, let G be a spanning subgraph of J, and let J
be connected. Then
min Xy = max (¢(J — 4) + b(J — 4) — 1 — |4]).
He#(G,J) A<SEW) '
Theorem 2. Let G and J be graphs, let G be a spanning subgraph of J, and let G
be connected. Then
max xy = max (¢(G — A) + bP(G — 4) — 1 — |4]).
He¥(G,J) ASE(G)
If we combine Theorem 1 or Theorem 2 with Theorem A, we can obtain a formula

for min g,(H) or for max g,(H), where G and J are the same as in Theorem 1 or
He(G,J) He¥(G,J)
in Theorem 2, respectively. Especially, we can obtain two generalizations of Corol-

lary B:

Corollary 1. If G is a spanning subgraph of a connected graph J, then ¥(G, 5
contains at least one upper embeddable graph if and only if

eJ — A) + bE(J — A) — 2 < |A| for every A< E(J).
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Corollary 2. If G is a connected spanning subgraph of a graph J, then every
graph in #(G, J) is upper embeddable if and only if

oG — A) + bP(G — A) — 2= |4| forevery A < E(G).

The following notation will be useful for proving Theorems 1 and 2. Let G and J
be graphs, and let G be a spanning subgraph of J. If J is connected, then we denote
xg,= min xz and y&, = max(c(J — A) + bF(J — A) — 1 — |4]).

He¥(G,J) ASEWJ)
If G is connected, then we denote
xg,; = max xy and yg, = max(c(G — A) + bF(G — 4) — 1 — |4|).
He#(G,J) ASE(G)

Proof of Theorem 1. We shall prove that xj, = y&, by induction on the
number of edges of J. If E(J) = 0, then x§ , = 0 = yg ;. Let E(J) + 0. Assume that
for every pair of graphs G’ and J’ with the properties that G’ is a spanning subgraph
of J" and J' is connected, if |[E(J')| < |E(J)|, then x§, ;, = ¥§. ;.-

(I) First we wish to prove that y&, < x§&,. Let He S(G,J) and xy = x§ .
Then there exists a spanning tree 7 of H such that exactly x; components of
H — E(T) have odd numbers of edges. There exists 4 < E(J) such that ¢(J — 4) +
+ bE(J — A) — 1 — |4] = y¢,. Denote A, = A E(H). Moreover, denote by
By, Or By, the set of Foe C(H — Aj,) with the following two properties: B(Fo)
is odd, and {V(F 0)>T is connected or disconnected, respectively. Finally, we denote
by B¥, or B}, the set of Fe C(H — A) with the following three properties: B(F) is
odd, E(F) < E(G), and {V(F)); is connected or disconnected, respectively. The
fact that H is spanned by G implies that B¥, < B, and Bf;, < By,

It is not difficult to see that at least | Beos| — |40 — E(T)| components of H — E(T)
have odd numbers of edges. Thus x;; = [Beea| — |40 — E(T)| 2 |B&,| — |4 — E(T)|.
It is clear that :

(T — Ao) = ¢(H — Ag) + |Bais| = ¢(J — 4) + |Bi| .
Since T'is a tree, |E(T) n A| = ¢(T — Ao) — 1. We get that

x:,J =Xy = ]Bc#on - lA - E(T)l = (bG(J - A) - leisl) -
— (4] = |[E(T) ~ 4]) 2 b(J = 4) + ((J = 4) = o(T = Ao)) — |4] +
+((T = Ao) — 1) = v,

(II) Now we wish to prove that x&, < y&, . Consider an arbitrary 4 < E(J)
with the properties that '

(3) o(J—A) +b¢(J—A) —1—|A| = ygs and for every A' < E(J), if 4
is a proper subset of A’, then ¢(J — 4') + b§(J — A4) — 1 — |4| < VG-

We distinguish two cases:
Case 1. Let 4 = 0 and E(J) — E(G) # 0. Then y§, = 0. Let a € E(J) — E(G).

627



It follows from (3) that J — a is connected. For every Z < E(J — A),
AU = a)=2) + B —a) — 2) — 1 |2] =
— (olJ — ({a} v 2) + B — ({a} v 2) = 1 = [({a) v A +
+l<yé,+1=1.

Hence, y§ ;_, < 0. It follows from the definition of yg ,_, that Y& j—a 2 0. There-
fore, y& ,_, = 0. According to the induction hypothesis, x§ ;_, = 0. Since a ¢ E(G),
xg’, =0= yg,,.

Case 2. Let either 4 + 0 or E(G) = E(J). We denote by C' the set of all Fe
e C(J — A) with the property that B(F) is odd and E(F) = E(G). Moreover, we
denote C” = C(J — 4) — C'.

For every F e C', let us observe the following fact: Consider an arbitrary e e E(F)
As follows from (3), F — e is connected. For every Z = E(F — e),

yE ;> eJ —(Au{e}uZ) + bE(J — (Au{ef v Z) -
—1—|Au{e}uz| = (c(J — A) + b¥(J — 4) — L — |4]) +

+ (d(F—¢) = 2) + bf_(F—¢) = 2) = 1 - |2]) - 2,
and thus yF#_, ._, < 2. Obviously, yf_, r_,. is identical with yp_, in the sense of
[5]. Since B(F — e) is even, it follows from Proposition in [5] that x7_, »_, is even
as well, and thus yF_, ._, = 0. Since |E(F — e)| < |E(J)|, according to the induc-
tion hypothesis, x;_, z_, = 0.

We have obtained that

4) if FeC' and ee E(F'), then F — e is connected and xp_, = 0.

Let A = §. According to the assumption of Case 2, G = J. It follows from (3)
that f(J) is odd. Then y& ; = 1. Statement (4) implies that x§ ; < 1, and therefore,
xg ; < y& ;. We shall now assume that 4 + 0.

For every F e C”, let us observe the following fact: Denote Gy = (V(F))g. If
Z < E(F), then

VerZ c(J —(AUZ2) + bE(J —(Au2Z)-1-]AuZ| =
=(c(J—A)+bi(J—A4) —1—|4]) +
+((F-Z)+ bi(F-2)-1-12]).
This implies that y&,_ < 0, and therefore, y§, » = 0. Since 4 + 0, |E(F)| < |E(J)|.
According to the induction hypothesis, x&, r = 0.
We have obtain that

(5)  if FeC”, then there exists Hp € #(<V(F)¢, F) such that xz_ = 0.

We denote by J the graph obtained from the graph J — (E(J) — A) in such a way
that for each F € C' U C”, the vertices of F are identified into one vertex, say a vertex
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vp. Clearly,
V(J) = {vp; FeC'uC"} and E(J)=4;
for every a € A and every F e C' U C”, a is incident with vy in J if and only if a is
incident with a vertex of F in J. Denote D = {vy; F e C'}.
If Lis a connected graph and W < V(L), then — similarly as in [7] — we denote

by ty(L) the number of isolated vertices w of L such that w e W. It is easy to see that
t(J — Ao) < bE(J — A,) for every A, = A. This implies that
(5) max (e(J — Ao) + tp(J — 4o) — 1 — |4o]) S ¥& .
AoS A

We denote by .# the set of all subsets C* of C’ with the property that there exists
a mapping g of C* into A4 such that

(a) vp and g(F) are incident in J for each F € C*,

(b) if F, and F, are distinct elements of C*, then g(F,) + g(F,), and

(c) J = g(C*) is connected.
It immediately follows from Theorem in [7] (or it easily follows also from Lemma 3
in [5]) that
(6) min [C' — Co| £ max (¢(J — Ag) + t,(J — Ag) — 1 — |4]) .

Coe M AoS A -

Statements (5) and (6) imply that there exists C* < C’ such that

0 €] = |C* = yg.s -
Consider a mapping g of C* into A which fulfils (a), (b) and (c). Denote 4* = g{C*).

According to (c), J — A* is connected, and therefore, |4| — |4*| = |C'| + |C"| — 1.
It follows from (3) that

(8) ¥és=2Cl+[C"] -1~ |4].

Obviously, |4*| = |C*|. If we combine (7) and (8), we get that |A| — [4*| < |C'| +
+|C"| = 1. Hence, |4| — |4*| = |C'| + |C"| — 1. This means that J — A% is
a spanning tree of J.

For every F e C*, we can choose an edge ¢{F) of F with the property that e(F)
and g(F) are adjacent in J. Denote

A = A* U {e(F); Fe C*} .

Since the edges A— A* form a spanning tree of J, it follows from (3) and (4) that there
exists H € #(G — A, J — ) such that x5 < |C'| — |C*| £ y& ;. Tt follows from the
definition of A that there exists H € #(G, J) such that x; < xgz. Hence, xg, S
< xg < y& ;, which completes the proof of Theorem 1.

Remark. Many ideas in the proof of Theorem 1 have been derived from those
in the second proof of Theorem 1 of [5], which is Theorem B of the present paper.
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Proof of Theorem 2. We shall prove that xZ , = yZ; by using Theorem B.
(I) First we wish to prove that xZ, = yg ;. Consider A < E(G) such that
(G — A) + (G — A) — 1 — |4] = yg,,
and for every proper subset A, of A4,
(G — Ag) + bF(G — Ag) — 1 — |4, < ¥5, .

This implies that every component of G — A is an induced subgraph of G. We denote
by C* the set of all F e C(G — A) such that S{F) is even and F is not an induced
subgraph of J. This means that for every F e C* we can choose an edge ey € E(J)
such that if ey is incident with a vertex u in J, then u € V(F). We denote by H the
graph in #(G, J) which is obtained from G by adding all the edges ey, F € C*. Clearly,
b(H — A) = b5\G — A), and thus
o(H — A) + b(H — A) — 1 — |4] =
=¢G—A) +bP(G—A)—1- |4 =25,.
According to Theorem B,
xy = c(H— A) + b(H — 4) — 1 — [4],
and therefore, x5 ; = xz = ¥3 .

(IT) Now we wish to prove that xg, < yZ,. There exists H € #(G, J) such that
x5 ; = xy. As follows from Theorem B, there exists 4 < E(H) such that

xg=cH—A)+ b(H—A)—1—|4].
Put A* = A n E(G).

Consider an arbitrary F € C(H — A). Denote F* = (V(F))¢. If F* is connected,
then b(F) < b(F*), and therefore, ¢(F) + b(F) < ¢(F*) + bF(F*). If F* is dis-
connected, then ¢(F) + b(F) £ 2 £ ¢(F*) £ ¢(F*) + bP(F*).

Therefore,
¢(H— A)+ bH—A)—1—]4 =
(G — A)+ bP(G— A)—1— |A] £ G, .

IIA

Il

We have that x7 ; = xz < yZ ;, which completes the proof of Theorem 2.

Remark. Theorem 2 was proved in [6] under the condition that J is a complete
graph (with no loop or multiple edge) and xZ, < 1. The proof of Theorem 2 is
based on the ideas of the proof of Theorem 2 of [6].
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