Previous |  Up |  Next

Article

References:
[1] J. Denes A. D. Keedwell: Latin squares and their application. Akademiai Kiado, Budapest, 1974. MR 0351850
[2] P. Křivka: The dimension of odd cycles and cartesian cubes. Coll. Math. Soc. János Bolyai 25. Alg. meth. in graph th., Szeged 1978, 435 - 443. MR 0642056
[3] P. Křivka: Dimension of the sum of two copies of a graph. Czech. Math. J., 31 (106), 1981, 514-520. MR 0631599
[4] L. Lovasz J. Nešetřil A. Pultr: On a product dimension of graphs. J. Comb. Theory, 1981, B37, 5, 231-256.
[5] J. Nešetřil A. Pultr: A Dushnik-Miller type dimension of graphs and its complexity. Proc. of the Conf. on Fundam. of Comp. Theory, Lecture Notes in Comp. Sc. 56, Springer 1977, 482-493. MR 0491363
[6] J. Nešetřil A. Pultr: Product and other representations of graphs and related characteristics. Coll. Math. Soc. János Bolyai 25. Alg. meth. in graph th., Szeged 1978. MR 0642062
[7] J. Nešetřil V. Rödl: A simple proof of the Galvin-Ramsey property of graphs and a dimension of a graph. Discrete Math. 23 (1978), 49-55. DOI 10.1016/0012-365X(78)90186-3 | MR 0523311
[8] S. Poljak V. Rödl: Orthogonal partitions and covering of graphs. Czech. Math. J. 30 (105), 1980, 475-485. MR 0583626
Partner of
EuDML logo