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1. PRELIMINARIES

1.1. Conventions and notation. We shall not repeat the definitions of the basic
notions (graph, homomorphism, embedding, spanned subgraph, degree of a vertex —
dg(x), cardinality of V(G) — |G|, A-partite graph, complete graph — K,, complete
J-partite graph — K, .., cycles C,,). We also suppose as already known the opera-
tions of sum (the sum of k copies of G being denoted as k . G), cartesian product,
categorial product. Nevertheless, let us mention some of the less current notation:
Let X be a set. Then we write P(X) = {Y: Ye X} and P_,X) = {Y < X:|Y| < d}.
Let I': X — P(X). Then I': X — P(X) is defined as follows:

yel(x)<xell(y).

Obviously, I corresponds to a graph iff I' = I and x ¢ I'(x). Such I" will be sometimes
denoted by I'; where G is the associated graph, and will be called a graph-mapping.

The upper integral approximation of a real number r will be denoted by (r)*.

The symbol I(N x d) denotes a matrix N x d, the i-th row of which is the vector
[ A

1.2. Some basic facts about the dimension and encodings. The dimension of G
defined as the least natural number n such that G can be embedded into N" (where
the N” is the n-th categorial power of the complete graph whose vertices are all
natural numbers) leads in a natural way to an encoding, i.e. associating the vertices
x € V(X) with distinct vectors v(x) = vy(x), ..., v,(x) in natural numbers so that for
{x, y} € E(G) the vectors v{x) and v{y) do not meet and for {x, y} ¢ E(G) they meet
in at least one coordinate.

For a graph G define the strong matching number p(G) as the maximal cardinality
of an X < V(G) such that there exists a one-to-one mapping ¢ of X ontoa Y = V(G),
disjoint from X, for which

{x,y}€E(G), xeX and yeY iff y=¢(x).
Then dim (G) = log, #(G) whenever ;(G) = 3 [4].
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Another graph characteristic is i(G): Let there be distinct x', ..., x* in V(G) such
that for some y', ..., y* € V{(G),

{x, y} € E(G) and {x', y/} ¢ E(G) for i<.

This k is then denoted by fi{G) and we have dim (G) = log, i(G) [4].

For C,, wecanput x’' =i — 1, y' =i (i = 1,...,n — 2), consequently ji(C,,) =
= 2(n — 1)ie.dim C,, 2 log, (n — 1) + 1. Actually, dim C,, = (log, (n — 1))* +
+ 1for n > 2 [4].

We shall also need the following propositions [4]:

dim (k. K,) = (log, k)" + 1, dim (K, + K,) =n.

Finally, recall that, by [3], dim (K, + K,) = n (actually, we have proved more —
that dim (K, + K,,) = max (m, n) — for further generalization see 3.5.a). Besides,
it is clear that for a spanned subgraph H of G, dim(H) < dim (G), dimK, = 1,
dimK,,..,, = 2 (in the first coordinate there are the same numbers for the vertices
of one colour, in the second there are the numbers 1, ..., Zri). Let us also remark
that the homomorphism Theorem 2.1 from [3] holds naturally for any number
of copies.

2. GENERALIZED LATIN RECTANGLES

2.1. In the paper [3] we defined the Generalized Latin Rectangle corresponding
to some I:X — P_,/X) (GLRT) as a matrix X x d with columns p,,..., p,
(p; being permutations of X) such that for all x € X,

I(x) = {py(x), ..., pdx)} = v{x).
In Lemma 2.2 in [3] we have proved that such GLR I exists whenever I is a graph-
mapping. We call two GLR T P and Q (corresponding to the same I') independent

iff both Q7' o P and P™' - Q are again GLR I' (by composition we mean the com-
position of the column permutations).

2.2. Lemma. Let Q and P be two GLR I'. Denote F(x) = {y e X: v(y) in Q meets
v{x) in P}. Then Q™' o P is again GLR I iff

xeX =TI(x) c F(x).

Proof. We have F{x) = (Q™'. P)(x): y € F(x) iff there exists a column s such
that p(x) = qy) <y =(q; o p)(x) = ye(Q - P)(x). O

2.3. Corollary. a) If I' is a graph-mapping then Q™' o P is GLR I iff
P '5Q is GLRT.
b) If I' is a graph G mapping then P and Q are independent iff
{x, y} € E(G) = v(x) in P meets v(y) in Q.
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c) Two latin squares P and Q of the same order are independent iff each row of P
meets each row of Q. [

2.4. Two matrices P and Q of the same dimension, their elements being integers from 1

to n, are called orthogonal if for every pair a, b (1 < a, b < n) there exists at most
one pair (i, j) such that P, ; = a and Q; ; = b [1].

Lemma. Two GLRI' (N x m) P and Q are orthogonal if and only if Qo P™!
is LR.
Proof. Let P, Q be not orthogonal, i.e. there exist a, b < N and two different

pairs (i, j;) and (i, j,) such that P; ; =P, ; =a and Q; ; = Q;,;, = b.
Consequently,

pi(i1) = piz) = a and q;(iy) = q;,(i2) = b.
This means

h=(p;)7" (@), iz =(pn)"" (a).

After substituting into the second equation we get

(9;,p7,") (@) = (a;,p1,") (@) = b .
Thus in the a-th row of the matrix Q o P~ the same element b is in both columns
J1»J2- By reversing the reasoning we obtain the other implication. []

2.5. Corollary. The number of independent LS of order n equals the number of
orthogonal LS of order n.

Proof. Let Qy, ..., O, be independent LS of order n. Thus Q; ' Q;fori=+j
is again LS. It is easy to prove that if P is LS then P~ si again LS so that for Q; ', ...
..., @71 we have that Q7' o (Q;")™" = Q;' » Q; is again LS and according to the

previous lemma Q1 ', ..., Q; ! are orthogonal LS of order n. If we start with ortho-
gonal LS it is easy to show that their inversion is a system of independent LS. [

We shall denote the number of orthogonal LS of order n by N(n). Let us recall
that N(n) < n — 1, with equality holding whenever n is a prime power, N(12) = 5,
n#2,6=N(n)=21If n= p}...p{is the prime decomposition of n then N(n) =
> min (p}' — 1) [1].

3. BASIC FACTS

3.1. Theorem. a) Let G be a graph such that there exist t — 1 independent GLR I'g
(|G| x A(G)). Then
dim(7.G) < dim G + A(G).

b) For a given k, let m be the minimal number such that there exist k — 1 in-
dependent GLR I'; (|G| x m). Then

dim(k.G) £ dimG + m.
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Proof is similar to that of Theorem 2.3 in [3]. There we have added the matrix
I(|G| x A(G)) to one of the encodings of G and the corresponding GLR I'; to the
other. Now, we have ¢ {or k) encodings of G, to one of them we add the matrix
I(]G| x A(G)) (or I(|G| x m), respectively) and to each of the rest one of the ¢ — 1
independent GLR I'; (or one of the k — 1 independent GLR I'; (|G| x m)). [

3.2. Lemma. Let G be a graph, k a given integer. There exist k — 1 independent
GLR I'; (|G| x A(G) (log, k)*) where t is the maximal number such that there
exist t — 1 independent GLR I'; (|G| x A(G)).

Proof. Let r = (log, k)*. We construct " — 1 = k — 1 independent GLR I's:
Let us denote t — 1 independent GLR I'; (|G| % A(G)) by Py, ..., P,_; and let
Py = I(|G] x A(G)). Let

M ={viv=(vy,...,0), 0 < v, <t — 1, at least one v; * 0}

(M| = 1" — 1) and for ve M let P, be the matrix |G| x A(G).r given by P, =
= P, P, ... P, (P, are just written down one after another).

It is easy to prove that each P, is GLR I'; and that they are pairwise independent.

O
3.3. Corollary. Let G be a graph with t — 1 independent GLR I'; (|G| x A(G)),
k an integer. Then

dim (k. G) < dim G + A(G) (log, k)* .
In paticular, dim (k. G) < dim G + A(G) (log, k)*. O

3.4. Proposition. dim (k . K,) = n iff there exist at least k — 1 independent LS
of order n.

Proof. <=: It is clear that every LS is an encoding of K, and k — 1 independent
LS form an encoding of the sum (k — 1). K. Besides, I(n x n) is also an encoding
of K, and each row of this matrix meets each row of each LS.

=: As each row of one encoding of K, meets each row of another encoding of K,,,
two rows of one encoding never meet, at each place some two of the rows are bound
to meet (for each pair of K,). So we can suppose that each column is a permutation
of the numbers 1, ..., n. If we transform each encoding in such a way that the first
columns are identical permutations, we can easily check that these encodings are
independent LS.

3.5. Corollary. a) For any integer n, dim ((n +1).K,) > n.
b) When n is a prime power then dim (n .K,) = n.

¢) If N(n) is the number of OLS of order n, then
dim (N(n) + 1).K,) = n, dim((N(n) +2).K,) >n.
d) dim(K,, + ... + K,,) = max (n,, ..., n,) iff p <N (max(ng,...n") + 1. 0O
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3.6. Corollary. a) Let n = p' ... pj* be the prime decomposition of n, let a =
= min (pj — 1). Then dim (a . K,) = n.
b) dim (6. K;,) = 12.
c) For n# 2,6, dim(3.K,) = n.

Proof follows from the properties of OLS. []

3.7. Proposition. a) Let n be a prime power, k an integer, then
dim(k.K,) <1+ (n—1)(log, k)" .

b) For n #2,6dim(k.K,) <1+ (n — 1)(logs k)*.
¢) dim(k.K,) £ 1+ (n — 1) (logyu+1 k)™

Proof. If we define I'g (x) = X \ {x} we can complete each GLR Iy, is a unique
way to an LS and vice versa, i.e. the number of independent GLR I'y, equals the num-
ber of independent (orthogonal) LS. The rest follows from Corollary 3.3. [

3.8. Lemma. Let G be a graph, k an integer. Let there exist t independent
GLR I'g (|G| x m). Then there exist t independent GLR I'y (k|G| x m) where I'y,
is a graph-mapping corresponding to the sum k . G.

Proof. If pis a permutation of the set 1, ..., N (N = |G|) let ¢ . p be a permutation
of the set 1, ..., ¢. N given by

j.NLi<(j+1).N=>(t.p)(i)—j.N=p(i —j.N).

If P={py,...,pn} is @ GLRT then t.P = {t.p;,...,t.p,} is a GLR I'y: It
suffices to number the vertices of k. G in such a way that I'y(i) = (. P)(i). One
copy is already numbered (P is GLR I';); let us number the others in such a way
that if i and j are numbers of the same vertex in different copies of G then i and j
are congruent mod N. Now, for j. N <i = (j + 1).N we have I'y(i) =
=Tgi—j.N)+ J.N and since (t.P)(i)=Pli —j.N)+j.N, we get
(t. P)(i) o I'y(i). Besides, if P and Q are independent GLR I'; then ¢. P and t. Q
are independent GLR I'y; as (1. P)™* =1t.(p)"! and (¢. p)(¢. q) = t(p - q) yields
(t.P)'e(t.Q)=tP 'cQ). O

3.9. Proposition. a) Let m, n be integers, m > n, N(m) > N(n). Then
dim (N(m) + 1) .K,) S m.
b) Let n,ny, ..., n, be integers, n < n;, let m = ﬁ (N(n;) + 1). Then dim(m . K,) <
<1+ _zkl(ni —-1). i

Proof. a) Follows immediately from Corollary 2.5.0).
b) By induction: k = 1 — this is pdrt a). Let now m’ = m(N(ny.;) + 1) where
Mepq 2 n. As dim((N(ne.,) + 1).K,) < n and as we can suppose that the first
column of the encoding is the identity, we get (after removing this first column)
N(ny4,) independent GLR I'y, (n x d) where d < n,,, — 1. According to Lemma
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3.8 there exist N(n,,)independent GLR I'y (mn x d) (I'y corresponding to the
graph m . K,). Now we take N(n, ) + 1 identical encodings of the sum m . K,, to
one of them we add the matrix I(mn x d), to each of the others one of the GLR I,

O
3.10. Corollary. a) If k is a prime power, n < k, then

dim (k. K,) < k.

b) Let k, n be integers, k > n, ny, ..., n,, n; = n prime powers, denote m = n, ...
.o nyt (m = k). Then

h K
dim(k.K,) < d, + 1 where d, =73 r(n, —1).
' i=1

4. SOME APPLICATIONS

4.1. Example. Estimation of the dimension of the sums of K,, K3, K.

K,: From 3.7.a) we have dim (k . K,) < 1 + I(log, k)*, i.e. our estimate coincides
with the actual dimension (see [4]).

K3: We get the best estimate if we put m = 3" . 4™, r, any integer, r, < 2 in 3.10.
For an upper estimate we have dim (k.K3) < 2(r, — 1) + 4 = 2r; + 2 for
3 < k<34 dim(k.K;) S 2ry + 1)+ 1=2r +3 for 3.4 < k<
< 3r1+ 1 .

For a lower estimate we get dim (k. K;) = 4 from 3.5.a), and, using the strong

matching number, dim (k . K3) = log, u(k . K3) = log, k. The results up to m =

= 729 are collected in Table 1.

Table 1.
m 4 ‘ 9 12 27 36 81 108 243 324 | 729
d, +1 4 5 6 7 8 9 10 11 12 13
lower esitmate 4 4 4 5 6 7 7 8 9 10

K,: The best results are for m = 4™ .5, r, any integer, r, < 3. For an upper
estimate we have

for 4" < k <471 .5: dim(k.Ky) < 3(ry — 1) + 5= 3r, + 2,

for 471 .5 <k <4777 5% dim(k.Ky) <3(r; —2)+ 2.4+ 1=
=3r; +3,

for 4172 5> <k < 4% dim(k.Ky) S 3(ry + 1) + 1 =3r, + 4

For a lower estimate we get again dim (k . K,) = max (5, log, k). The results up to
320 are collected in Table 2. We could get quite analogous results for Ks (m =
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= 5t 7r2 g3 where 2r, +3r; <4, ie. r, +r3 = 1). A different situation would
occur for Kg, as N(6) = 1 so that the best upper estimate is obtained from the
inequality dim (k . K,) < dim (k . K,) (for K; we get the best upper estimate when
m = 7" .87 97 11" where r, + 2r; + 4r, < 6). It is possible to give a general

Table 2.
_ — e B _
it 5 16 20 | 25 , 64 | 80 | 100 | 256 | 320
| ' i
decomposition 4% | 4.5 | 52 43 142 504,52 4* |43 .5
d, + 1 s |7 8 | 9 10 1 12 13 14
lower cstimate 5 ' 5 51 5 6 l 7 ‘ 7 8 8

expression for the optimal m but it is a little bit clumsy (for an interested reader it is
available from the author). For small n it can be simplified to

t
Yor{n,—n)<n-1.
i=1

Now, we turn to A-partite graphs and cycles. The following theorem is actually
Theorem 2.5 from [3] in a more general form.

4.2. Theorem. If G is a A-partite graph then
dim (k. G) < dim(k.K;) — 1 + dimG.

Proof. It is clear that there exists such an encoding (in the proper dimension)
of k . K, that the first column of all copies is the same encoding of K, and by means
of the homomorphism Theorem 2.1 from [3] we get the rest. []

4.3. Corollary. Let G be a A-partite graph. Then
a) dim (k. G) < dim G + (4 — 1) (log; k)* for A prime power;
b) dim (k. G) < dim G + (log, k)* for A = 2;
¢) dim (k. G) < dim G + (4 — 1) (logs k)* for A + 2,6;
d) dim (k. G) £ dim G + (4 — 1) (logyy+1 k)*;
¢) dim (k.K,) < dim (k. K, . ,) = dim (k. K,) + 1,
in particular:
(log, k)* + 1 < dim (k. K,, ,,) < (log, k)* + 2.

Proof follows from Proposition 3.7. []
4.4. Proposition.
log, k(n — 1) + 1 £ dim (k. C,,) < (log, (n — 1))* + 1 + (log, k)* for n > 2.

Proof. From 4.3.b) we have dim (k. C,,) < dim C,, + (log, k)* =
= (log, (n — 1))* + 1 + (log, k)*. For a lower estimate we use . By means of
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the construction from [4] (mentioned in 1.2) we get j(k.C,,) =k.2.(n — 1),
ie. dim(k.Cy) = log, k(n — 1) + 1. O

4.5. Corollary. Whenever

n > 2 and (log, (n — 1))* + (log, k)* < 1 + log, k(n — 1)
then
dim (k. C,,) = (log, (n — 1))* + (logo k)™ + 1,
in particular:

dim (2. C,,) = (logy (n — 1))" + 1 + 1
and if n = 2" + 1 then
dim (k. C,,) =t + (log, k)* + 1. O

In the same way we could get estimates for odd cycles. Possible generalizations of
Theorem 3.6, 4.1, 4.2 and 4.3 are left to the reader.

Acknowledgement. I am indebted to A. Pultr for useful discussions concerning
these topics.
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