Previous |  Up |  Next

Article

References:
[1] M. Behzad G. Chartrand, L. Lesniak-Foster: Graphs & Digraphs. Prindle, Weber & Schmidt, Boston 1979. MR 0525578
[2] G. Chartrand, R. E. Pippert: Locally connected graphs. Časopis pěst. mat. 99 (1974), 158-163. MR 0398872 | Zbl 0278.05113
[3] N. P. Homenko N. A. Ostroverkhy, V. A. Kusmenko: The maximum genus of graphs. (in Ukrainian, English summary). $\varphi$-peretvorennya grafiv (N. P. Homenko, ed.), IM AN URSR, Kiev 1973, pp. 180-210. MR 0422065
[4] M. Jungerman: A characterization of upper embeddable graphs. Trans. Amer. Math. Soc. 241 (1978), 401-406. MR 0492309 | Zbl 0379.05025
[5] L. Nebeský: Every connected, locally connected graph is upper embeddable. J. Graph Theory 5 (1981), 205-207. DOI 10.1002/jgt.3190050211 | MR 0615009
[6] L. Nebeský: A new characterization of the maximum genus of a graph. Czechoslovak Math. J. 31 (106) (1981), 604-613. MR 0631605
[7] R. D. Ringeisen: Survey of results on the maximum genus of a graph. J. Graph Theory 3 (1979), 1-13. DOI 10.1002/jgt.3190030102 | MR 0519169 | Zbl 0398.05029
[8] G. Ringel: Map Color Theorem. Springer-Verlag, Berlin 1974. MR 0349461 | Zbl 0287.05102
[9] A. T. White: Graphs, Groups, and Surfaces. North-Holland, Amsterdam 1973. Zbl 0268.05102
[10] N. H. Xuong: How to determine the maximum genus of a graph. J. Combinatorial Theory 26B (1979), 217-225. DOI 10.1016/0095-8956(79)90058-3 | MR 0532589 | Zbl 0403.05035
[11] B. Zelinka: Locally tree-like graphs. Časopis pěst. mat. 108 (1983), 230-238. MR 0716406 | Zbl 0528.05040
Partner of
EuDML logo