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0. It was proved in [5] that if G is a connected, locally connected graph with 
p ^ 3 vertices, then G contains a spanning tree T with the property that exactly one 
of the components of the graph G — E[T) is nontrivial (i.e. that exactly one of the 
components of G — Е(Т) is different from an isolated vertex). This result together 
with a certain characterization of upper embeddable graphs (see below) led to the 
theorem saying that if G is a connected, locally connected graph, then G is upper 
embeddable (see [5]). In the present paper the notion of a locally quasiconnected 
graph will be introduced and the above mentioned results on locally connected graphs 
will be generalized. 

1. By a graph we mean a graph in the sense of [ l ] ; if G is a graph, then the symbols 
V(G), £ ( G ) , and C(G) denote the vertex set of G, the edge set of G, and the number 
of components of G, respectively. Let G be a graph without isolated vertices. If 
V 6 V{G), then we denote by Ĝ ^̂  the subgraph of G induced by the vertices adjacent 
to V in G. We shall say that G is locally quasiconnected if for each pair of adjacent 
vertices и and w of G at least one of the graphs G(„) and G(^) is connected. It can be 
easily shown that if G is locally quasiconnected then it contains no pair of adjacent 
cut-vertices. Obviously, if G is a star, then it is locally quasiconnected. We say that G 
is locally connected if for each v e V(G), G^^y is connected. If G is locally connected, 
then it contains no cut-vertex (see [2], where locally connected graphs were studied). 

The following two theorems represent two distinct generalizations of the result 
mentioned at the very beginning of the present paper: 

Theorem 1. Let G be a nontrivial connected, locally quasiconnected graph. 
If G is different from a star, then there exists a spanning tree T of G with the pro­
perty that exactly one of the components of the graph G — Е(Т) is nontrivial. 

Theorem 2. Let G be a connected, locally connected graph with p ^ 3 vertices. 
Then there exists a spanning tree Tof G with the properties that exactly one of the ' 
components of the graph G — E(T) is nontrivial, and at most one of the com­
ponents of G — £ ( T ) is trivial. 
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Corollary (Zelinka [11]). / / G is a connected, locally connected graph with 
p ^ 2 vertices and q edges then q ^ 2p — 3. 

Before proving Theorems 1 and 2 we state two lemmas. The first of them follows 
from the fact that a tree contains no cycle. 

Lemma 1. Let G be a connected graph, and let The a spanning tree of G. Assume 
that there exist distinct u, u, w e F(G) such that uv, vw e E{T) and v is an isolated 
vertex of G ~ E(T). If и and w belong to distinct components of G — E(T) then G(y) 
is not connected. 

Let G be a connected graph with p ^ 3 vertices, let T be a spanning tree of G, 
and let V G V(G). We denote by T{v, G) the subgraph of T induced by V(G^^^) u {t>}, 
and by T[V, G ] the component of T(v, G) which contains v. Finally, we denote by 
T*̂ '̂̂ ^ the spanning subgraph of G induced by the set of edges 

(£(T) - E(T[v, G])) u [vw; w e V{T[V, G ] - V)} . 

Clearly, T^ '̂̂ ^ is a spanning tree of G. For any adjacent vertices и and w of G(ŷ , 
if uw G £(Г'^"'^^), then uv, vw e E{G) ~ £:(T^"'^^). The proof of the following lemma 
is easy. 

Lemma 2. Let G be a connected graph with p ^ 3 vertices, let T be a spanning 
tree of G, let v e V(G), and let u, w e V{G — v). Assume that G(y) is connected, and 
that either u, w e V{G(^^^ or there exists a component F of G — Е[Т) such that 
u,we V(F). Then there exists a component F' of G — E(T^^'^^) such that u, w e F(F'). 

If Я is a graph, then we denote by с*(Я) the number of nontrivial components of Я. 
Let G be a connected graph. For every spanning tree To of G, we define /XG('̂ O) = 
= c*(G — Е{ТОУ). We denote by /z^ the minimum integer m with the property that 
there exists a spanning tree Г of G such that / ÎG(^) == '^Î-

P roo f of T h e o r e m 1. Assume that G is different from a star. Since G is locally 
quasiconnected, it is obvious that /% ^ L We wish to prove that /i^ = 1. On the 
contrary, let h^ ^ 2. 

For every spanning tree To of G, we denote by i(To) the minimum integer По with 
the property that there exist vertices и and w of G which belong to distinct nontrivial 
components of G — E(TQ) and the distance between и and w in To equals nQ. More­
over, we denote by i the minimum integer n' such that there exists a spanning tree T' 
of G with the properties that hQ{T') = hQ and i(T') = n'. Obviously, / ^ 1. 

Consider a spanning tree T of G such that Ьд{Т) == hg and i(T) = /. There exist 
distinct nontrivial components F and T' of G — Е(Т) and vertices и G V(F) and 
u' e V(F') such that the distance between и and u' in Tequals i. Clearly, there exists 
exactly one vertex i> of G with the properties that uv e E{T) and v belongs to и — u' 
path in T. Since G is locally quasiconnected, it follows from Lemma 1 that i ^ 2. 
Let first / = 1. Then v = u\ Since G is locally quasiconnected, at least one of the 
graphs G(u) and G(v) is connected. Without loss of generality we assume that G(„) 
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is connected. Lemma 2 imphes that there exists a component F" of G — £(T^"'^^) 
such that V(F - u) u V{F') g V{F"). We get that /гс('Г^"''^0 < ^G{T\ which is 
a contradiction. Let now i = 2. Then v is an isolated vertex of G — Е{Т). As follows 
from Lemma 1, G(„) is connected. Since /IG(T^"'^^) ^ /г^, Lemma 2 implies that 
/ÎG(T<^"'^^) = /IG and /(T^"'̂ >) < i, which is a contradiction. 

Therefore, /z^ = 1, which completes the proof. 

P roo f of T h e o r e m 2. For every spanning tree To of G, the number of isolated 
vertices of G — F(T(y) will be denoted ЬуДТо). We denote by j the minimum integer 
m with the property that there exists a spanning tree Г of G such that /IG(T) = 1 
and j(T) = m. According to Theorem 1, the number J is well-defined. We wish to 
prove that j ^ \. On the contrary, let j ^ 2. 

For every spanning tree T^ of G with ДГо) ^ 2, we denote by /c(To) the minimum 
integer «o such that there exist distinct isolated vertices и and w of G — E{TQ) with 
the property that the distance between и and w in T^ equals ^o- Finally, we denote 
by к the minimum integer n' such that there exists a spanning tree T' of G with 
the properties that Нс{Т') = lj{T') = j and k{T') = n'. 

Consider a spanning tree Г of G with the properties that HQ^T) = 1, j(T) = / 
and /C(T) = k. There exist isolated vertices и and w of G — E(T) with the property 
that the distance between и and w in T equals k. As follows from Lemma 1, fe ^ 2. 
There exists exactly one vertex t; of G with the properties that uv e E(T) and v 
belongs to the и — w path in T. Since /c ^ 2, г; i?̂  w. Lemma 2 implies that 
hciT^"'"^^) = 1. Since ДТ^^'^>) ^ j , Lemma 2 implies that7(T^*''^^) = j , t;is an isolated 
vertex of G — £(Т^^''^^), and vw ф E[G). Therefore, vv is an isolated vertex of G — 
— £(T^^ '^^) . Since the distance between v and w in T^^'^^ does not exceed that in T, 
k{T^'''^^) < /c, which is a contradiction. 

Therefore, j S 1, which completes the proof. 

2. We shall now derive further properties of connected, locally quasiconnected 
graphs. If G is a graph and U^, U2 are disjoint subsets of V(G), then we denote by 
E(G; U^, U2) the set of edges e with the property that e is incident both with a vertex 
in U^ and with a vertex in U2. 

Lemma 3. Let G be a connected, locally quasiconnected graph with p ^ 4 
vertices. Consider a partition P of V(G) such that \P\ ^ 2, and that for every U € F, 
the subgraph of G induced by U is nontrivial and connected. There exist distinct 
Uu и2 e P such that \E{G; (7^, U2)\ ^ 2. 

Proof . Since G is connected, there exist distinct U^, U e P such that E(G; l / j , U) Ф 
Ф 0. This implies that there exist u' eU ^ and ueJJ such that u'u e E{G). Since G 
is locally quasiconnected, at least one of the graphs G(„' and G(„) is connected. 
Without loss of generality, let G(„') be connected. Since \lJ^\ ^ 2, \Vi n F(G(„'))| ^ 
g L Since G(„.) is connected, there exist v^,V2 e F(G(„.)) with the properties that 
^1 e C/j, V2 Ф U^, and v^V2 6 £(G). Obviously, there exists U2G P - {^1} such that 
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V2 6 U2. Since V2 G F(G(„,)), u'v2 e E(G). We get that \E{G; t/^, L/̂ )] ^ 2, and the 
lemma is proved. 

Theorem 3. Let G be a nontrivial oonneoted, hoally quasiconnected graph. 
Then 

c{G - Л) + o*(G - A) - 2 S\Ä\ for every A g E(G) . 

Proof. There exists AQ ^ ^ (^ ) with the properties that 

c{G - Ao) + c''{G ~ Ao) - 2 - |^o| ^ c{G - A) + c''{G ~ A) - 2 - \A\ 

for every A g £(G) 
and 

c(G - Ло) + c*(G - Ло) - 2 - |Ло| è c(G - Л^) + c*(G ~ A,) - 2 ~ \A,\ 

for every proper subset A^ of AQ . 

It is easy to see that each component of G — ̂ o is a nontrivial induced subgraph of G, 
We now wish to show that c{G — AQ) = 1. On the contrary, let c{G — A^) ^ 2. 

It follows from Lemma 3 that there exist distinct components F' and F" of G -- AQ 
such that \E{G; V{F% F ( F " ) | ^ 2. Denote A' = AQ - E(G; V(F% V{F'% Since F' 
and F" are nontrivial, c{G - AQ) + o'^{G - ^o) - 2 - |^o| ^ c{G - A') + 
+ C*(G — A') — 2 — \A'\, Since Л' is a proper subset of AQ, we get a contradiction. 
Thus, c(G — AQ) = 1. 

Clearly, AQ = 0. We have 

0 - c(G - Ло) + c'^iG - Ло) - 2 - \AQ\ . 

Hence the theorem follows. 

3. The theory of 2-cell embeddings of graphs in closed surfaces is a very fruitful 
branch of graph theory; cf. [8], [9] or Chapter 5 in [ l ] . A connected graph G is 
said to be upper embeddable if there exists a 2-cell embedding of G in the orientable 
closed surface of genus [(|£(G)| — \V(G)\ + l)/2]. Note that the concept of an upper 
embeddable graph is closely related to the concept of the maximum genus of a graph 
(see [7], for example). 

If Я is a graph, then we denote by b(H) the number of components F of H with the 
property that \E{F)\ - \V{F)\ + 1 is odd. 

The next theorem gives two characterizations of upper embeddable graphs: 

Theorem A. / / G is a connected graph, then the following three statements are 
equivalent: 

(I) G is upper embeddable; 
(II) there exists a spanning tree T of G with the property that for at most one 

component FQ of G — Е(Т), \E(FQ)\ is odd; 
(III) c{G - A) -i- b{G - A) - 2 й \Л1 for every A g £(G). 
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The equivalence ( l ) o ( I I ) was proved independently in [3], [4] and [10] (note 
that this equivalence was also applied in [5]). The equivalence (II) о (III) was proved 
in [6]. 

The following theorem, which is a generalization of the theorem in [5], can be 
obtained in two distinct ways: as a consequence of Theorem 1 and the implication 
(II) => (I), and as a consequence of Theorem 3 and the implication (III) => (I): 

Theorem 4. Let G be a nontrivial connected graph. If G is locally quasiconnected, 
then it is upper embeddable. 
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