[2] M. Gould, J. Iskra: Globally determined semigroups. (manuscript).
[3] M. Gould J. Iskra C. Tsinakis: Globally determined lattices and semilattices. (manuscript).
[5] E. M. Mogiljanskaja:
Global definability of certain semigroups. Uč. Zap. Leningrad. Gos. Ped. Inst. 404 (1971), 146- 149 (in Russian).
MR 0437664
[6] E. M. Mogiljanskaja:
On the definability of certain idempotent semigroups by the semigroup of their subsemigroups. Uč. Zap. Leningrad. Gos. Ped. Inst. 496 (1972), 37-48 (in Russian).
MR 0310103
[7] E. M. Mogiljanskaja:
Definability of certain holoid semigroups by means of the semigroup of all their subsets and subsemigroups. Uč. Zap. Leningrad. Gos. Ped. Inst. 496 (1972), 49-60 (in Russian).
MR 0310104
[8] E. M. Mogiljanskaja: The solution to a problem of Tamura. Sbornik Naučnych Trudov Leningrad. Gos. Ped. Inst., Modern Analysis and Geometry (1972), 148-151 (in Russian).
[10] A. Pultr:
Isomorphic types of objects in categories determined by numbers of morphisms. Acta Sci. Math., 35 (1973), 155-160.
MR 0325724
[11] T. Tamura: Isomorphism problem of power semigroups of completely 0-simple semigroups with finite structure groups. (manuscript).
[13] T. Tamura, J. Shafer:
Power semigroups II. Notices of the A.M.S. 15 (1968), 395.
MR 0225909
[14] Ju. M. Važenin:
On the global oversemigroup of a symmetric semigroup. Mat. Zap. Ural. Gos. Univ. 9 (1974), 3-10 (in Russian).
MR 0401963