Previous |  Up |  Next

Article

References:
[1] S. J. Bryant, J. G. Marica: Unary algebras. Рас. J. of Math., 10 (1960), 1347-1359. MR 0118692 | Zbl 0163.26501
[2] M. Gould, J. Iskra: Globally determined semigroups. (manuscript).
[3] M. Gould J. Iskra C. Tsinakis: Globally determined lattices and semilattices. (manuscript).
[4] L. Lovász: On the cancellation law among finite relational structures. Periodica Math. Hung., 1 (1971), 145-156. DOI 10.1007/BF02029172 | MR 0284391
[5] E. M. Mogiljanskaja: Global definability of certain semigroups. Uč. Zap. Leningrad. Gos. Ped. Inst. 404 (1971), 146- 149 (in Russian). MR 0437664
[6] E. M. Mogiljanskaja: On the definability of certain idempotent semigroups by the semigroup of their subsemigroups. Uč. Zap. Leningrad. Gos. Ped. Inst. 496 (1972), 37-48 (in Russian). MR 0310103
[7] E. M. Mogiljanskaja: Definability of certain holoid semigroups by means of the semigroup of all their subsets and subsemigroups. Uč. Zap. Leningrad. Gos. Ped. Inst. 496 (1972), 49-60 (in Russian). MR 0310104
[8] E. M. Mogiljanskaja: The solution to a problem of Tamura. Sbornik Naučnych Trudov Leningrad. Gos. Ped. Inst., Modern Analysis and Geometry (1972), 148-151 (in Russian).
[9] E. M. Mogiljanskaja: Non-isomorphic semigroups with isomorphic semigroups of subsets. Semigroup Forum 6 (1973), 330-333. DOI 10.1007/BF02389140 | MR 0390099 | Zbl 0267.20059
[10] A. Pultr: Isomorphic types of objects in categories determined by numbers of morphisms. Acta Sci. Math., 35 (1973), 155-160. MR 0325724
[11] T. Tamura: Isomorphism problem of power semigroups of completely 0-simple semigroups with finite structure groups. (manuscript).
[12] T. Tamura, J. Shafer: Power semigroups. Math. Japon. 12 (1967), 25-32. MR 0225909 | Zbl 0189.30302
[13] T. Tamura, J. Shafer: Power semigroups II. Notices of the A.M.S. 15 (1968), 395. MR 0225909
[14] Ju. M. Važenin: On the global oversemigroup of a symmetric semigroup. Mat. Zap. Ural. Gos. Univ. 9 (1974), 3-10 (in Russian). MR 0401963
Partner of
EuDML logo