Previous |  Up |  Next

Article

References:
[Fe] J. P. Ferrier: Paracompacité et espaces uniformes. Fund. Math. LXII (1968), 7-30. DOI 10.4064/fm-62-1-7-30 | MR 0226585 | Zbl 0155.50501
[Fre] D. K. Fremlin: $K$-analytic spaces with metrizable compacta. Mathematika 24 (1977), 257-261. DOI 10.1112/S0025579300009165 | MR 0515109
[Fro\sb{1}] Z. Frolík: A measurable map with analytic domain and metrizable range is quotient. Bull. Amer. Math. Soc. 76 (1970), 1112-1117. DOI 10.1090/S0002-9904-1970-12584-8 | MR 0265539
[Fro\sb{2}] Z. Frolík: Four functors into paved spaces. In: Seminar Uniform Spaces 1973 - 4, Matematický ústav ČSAV, Praha 1975, pp. 27-72. MR 0440511
[Fro\sb{3}] Z. Frolík: On $\sigma$-dd-simple spaces. Submitted to Čas. pěst. mat.
[F-H\sb{1}] Z. Frolík P. Holický: Decomposability of completely Suslin-additive families. Proc. Amer. Math. Soc. 82 (1981), 359-365. DOI 10.1090/S0002-9939-1981-0612719-6 | MR 0612719
[F-H\sb{2}] Z. Frolík P. Holický: Analytic and Luzin spaces (non-separable case). Topology and appl.
[F-H\sb{3}] Z. Frolík P. Holický: Applications of Luzinian separation principles (non-separable case). Fund. Math. CXVII (1983), 165-185. DOI 10.4064/fm-117-3-165-185 | MR 0719837
[H\sb{1}] R. W. Hansell: On the non-separable theory of Borel and Suslin sets. Bull. Amer. Math. Soc. 78 (1972), 236-241. DOI 10.1090/S0002-9904-1972-12936-7 | MR 0294138
[H\sb{2}] R. W. Hansell: On the non-separable theory of k-Borel and Suslin sets. Gen. Top. Appl. 3 (1973), 161-195. MR 0319170
[K-P] J. Kaniewski R. Pol: Borel-measurable selectors for compact-valued mappings in the non-separable case. Bull. Acad. Polon. Sci. Ser. Math. 23 (1975), 1043-50. MR 0410657
[T] M. Talagrand: Sur la structure Borélienne des espaces analytiques. Bull. Sc. Math. 101 (1977), 415-422. MR 0500093 | Zbl 0368.28003
Partner of
EuDML logo