[2] Obata M.:
The Gauss map of a minimal immersion. Journal of differential geometry, vol. 2, nr. 2, 217-223 (1968).
MR 0234388
[3] Spivak M.:
A comprehensive introduction to differential geometry. (vol.4). Publish or perish inc., Boston (1970).
Zbl 0202.52201
[4] Thas C.: Een (lokale) studie van de (m + 1)-dimensionale variëteiten van de n-dimensionale euklidische ruimte $R^n$ (n ≥ 2m + 1 en m ≥ 1), beschreven door een ééndimensionale familie van m-dimensionale linéaire ruimten. (English summary). Meded. Kon. Acad. Wet., Lett., Sch. K. van België, jaargang XXXVI, nr. 4, 83 pp. (1974).
[5] Thas C.:
A Gauss map on hypersurfaces of submanifolds in euclidean spaces. J. Korean Math. Soc., vol. 76, 1, 17-27, (1979).
MR 0543079 |
Zbl 0433.53014
[6] Thas C.:
A note on a class of submanifolds of a space form $R^m$ {k). Soochow J. Math., vol. 4, pp. 29-38 (1978).
MR 0530536
[7] Thas C.:
On submanifolds of a Riemannian manifold M containing a hypersurface which is totally geodesic in M and applications. Resultate der Mathematik, Vol, 5, pp. 1-10, (1983).
MR 0732912 |
Zbl 0531.53001