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1. INTRODUCTION

We assume throughout that all manifolds, maps, vector fields, etc. ... are dif-
ferentiable of class C*. We work always in the projective model of the m-dimensional
elliptic space E™ of constant curvature + 1, that is, the points of E™ are the points of
the real m-dimensional projective space 2™, there is an absolute totally imaginary
hyperquadric I' and the totally geodesic subspaces of E™ are the linear subspaces
of ™.

Assume that M is an (n + 1)-dimensional submanifold of E™, which contains an
n-dimensional submanifold (hypersurface) N, which is totally geodesic in E™
(m>n+1>2).

The Riemannian connections of E", M and N are respectively denoted by D, D
and D, while V() is the vector-valued second fundamental form of M in E™. Sup-
pose that X and Y are vector fields of N and that £ is the unit normal vector field
on N in M. Since N is totally geodesic in E™, we have V(X,Y) = 0. Moreover, Dy
is orthogonal with ¢ and with N, because, if {, ) denotes the metric tensor of E™
(and also the induced metrics on M and on N),

0 = X(&, &) = 2Dy, &

and

0= X< YY) =<Dy&, Y + (& DyY),
while

DyY = DyY andthus (& DyY)=0.

Because of all this we get Dy¢ = 0 or Dyé = V(X, &).

The Riemannian curvatures K(X, &) of M at the points of N in the so-called normal
plane directions (X ,&)on N in M, are given by

o (X, 8, V(X, O
(1.1) K(X, &) = +1 s
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Definitions. X, € N, determines a principal direction at pe N if K(X,,, &,) is an
extremal value of the Riemann curvatures of M in the normal plane directions on N,
in M,. A vector field X of N is called principal if it gives a principal direction at
each point of his domain. A line of sectional curvature on N is a curve on N such that
the tangent vector field is principal. Because of (1.1) and since {V(X, &), V(Y, &)>
determnes a symmetric two-covariant tensor field on N, we have at each point
of N n mutually orthogonal principal directions. The extremal values of (K(X, &) — 1)
at a point p of N are denoted by K,(p) i = 1, ..., n. The product of these ‘‘principal

curvatures” is denoted by: o (p) = [ Ki(p).
i=1

From now on we suppose that the Riemann curvature of M in any normal plane
direction on N in M is never equal to +1, i.e. we assume that V(X,, ,) # 0 for
each vector X, & 0 at each point of N. As a corollary we have now that necessarily
m=2n + 1.

Next, if we put for each vectors X, and Y, at each point p of N (supposing again
that ¢ is the unit normal vector field on N in M):

9(X,, Y,) = <Dy &, Dy &> = V(X &), V(Y &)

then, because of (1.1), g(X,, X,) = <X,, X,> (1 — K(X,,¢,)) > 0if X, &+ 0 and.g
is symmetric two-covariant positive definite. Thus g determines a metric tensor
on N and N endowed with this new metric becomes a Riemannian manifold denoted
by N'.

We construct on N with respect to M two Gauss maps. The first is just the natural
bijection i: N — N’; p — p. The second is set up as follows: on the complete geodesic
of E™ which is at any point p of N tangent to £, there is a unique point p’ at elliptic
distance n/2 and p — p’ is a mapping f which sends N to the so-called dual image
f(N) of N with respect to M. Notice that f(N) is contained in the (m — n — 1)-
dimensional dual (with respect to the absolute hyperquadric I') totally geodesic
subspace of N in E™ and, because of our assumptions, it is not difficult to proof
that f(N) is an n-dimensional submanifold which is locally isometric with N'.

For the (easy) proofs of the following results, we refer to [7]:

Theorem. 1. The lines of sectional curvature of N are the n families of curves
which are mutually orthogonal in N and in N'.

2.If peN, X,eN, and ¢:[a,b] > N; s — o(s) is a curve on N with N-arc
length s and N'-arc length s', such that

a(se) = p and T, , = X,[KX,, X '?,
then

(12) KX, &) =1- (‘;SS )

=50
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3. Suppose that o (resp. ') is a volume element at the point p of N (resp. N'),
then

(13) o = (=1 #(p)]eo.

Remark. The map which assigns to each point p of M the totally geodesic (n + 1)-
dimensional subspace of E™ tangent to M, at p is called the generalized Gauss
map G: M — Q, where Q is the set of all the (n + 1)-dimensional totally geodesic
subspaces of E™. There is a standard Riemannian metric d22 on Q with respect to
which Q ‘s a symmetric Riemannian space. The quadratic differential form G*(dZ?)
induced on M by this Gauss map is the third fundamental form on M. In [2] Obata
obtained a (since then wellknown) relation among this third fundamental form on M,
the Ricci form Ric(M) on M and the second fundamental form (H, V) on M in the
direction of the mean curvature vector H of M in E™:

G*(d2?) = (n + 1) CH, V) — Rie(M) + n{, > .

If X, Yare vector fields of N and ey, ..., e,, £ is an orthonormal base field of M at the
points of N, then, if R is the curvature tensor of M, we get because of the Gauss
equation, since V(X,Y) =0 and V(e;,e) =0, i=1,...,n:

n

Ric(M) (X, Y) = Y. (R(e;, X) Y, ) + <R({, X) Y, &) =

=1

=(n+ 1)X, Yy = (V(X, &), V(Y,E)) = (n + 1) <X, YD — g(X, Y).

Thus, on N we have the following relation among the metric tensors ¢, ), g and the
third fundamental form G*(dX?):

g =<, + G*dz?).

2. NON-DEVELOPABLE GENERALIZED RULED SURFACES (G.R.S.) IN E™

A (n + 1)-dimensional G.R.S. in E™, i.e. a submanifold which admits a codimen-
sion one foliation such that each leave is a complete totally geodesic subspace (i.e.
a E")in E™, is a G.R.S. in 2™ and it is non-developable iff in 2™ for each generating
space N the map: (point p) — (tangent space at p, considered as a linear subspace
of #™) is a non-singular projectivity ([4]). Assume that N is a fixed n-dimensional
generating space of the G.R.S. The tangent spaces of the G.R.S. at the points of N
generate a (2n + 1)-dimensional subspace of 2™, i.e. a totally geodesic E>**! of E™,
and, the dual image f(N) is the n-dimensional dual totally geodesic subspace of N
in this E>"*!. Moreover f: N — f(N) regarded as a map between the n-dimensional
projective spaces N and f(N) is a non-singular projectivity and f: N’ — f(N) is an
isometry.
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The dual images f(N ) of the generating spaces of the G.R.S. generate the so-called
dual G.R.S. It is not difficult to see that the dual image of the generating space f| (N)
in this dual G.R.S. is again N and that this (n+ 1)-dimensional dual G.R.S. is also
non-developable. Finally remark that because of the foregoing, N’ is an n-dimensional
elliptic space of curvature +1 in the elliptic space N, such that N’ has an absolute
imaginary hyperquadric I"" in N (remark that f(I'") = f(N) n I') and that N’ and N
have the same geodesic lines and totally geodesic subspaces. The absolute hyper-
quadric of the elliptic space N is of course I' n N. We suppose throughout that we
are in the ‘‘general case” that is, that I'"” is in general position with respect to I' n N.

Next consider a complete geodesic line (= straight line) L of N (and thus also
of N'): on L there are in the general case just two points /; and I, at distance 72
from each other in N and in N’; i.e. I; and [, are conjugate with respect to I' n N
and with respect to I (thus the distance between f(I;) and f(I,) is also =/2). Call
these points the points of striction of L. Assume that we have in E™ a projective co-
ordinate system such that the points Iy, I,, f(l;), f(I;) have resp. coordinates
(1,0,...,0),(0,1,0,...,0), (0,...,0,1,0), (0, ...,0, 1) and that the absolute hyper-
quadric I' has the equation x} + ... + x2 = 0. The restriction of f to Lis a projec-
tivity f |,_: L— f(L);(1,1,0,...,0) > (0, ..., 0, 1, '), which has now a representation
of the form t' = t/d, where d is a real non-zero constant. We find, if we put for a gen-
eral point p of L: s = distance (I,, p) in N and s’ = distance (I, p) in N’ = distance
(/1) (7)) in S(N),

2
—2; . . - . t
e 21s=(1,_1,0,t)=1 t — 7
1+ £ 1+
and thus
1-1 -2t
cos(——23)=—-——t—, sin (—2s) =
1+ 12 1+ 7
or
cos?s = 5> Sinscoss = and finally tgs =1t.
1+t 1+ £

In the same way we have tg s’ = ¢’ and thus there is a constant d associated with L
such that (we always assume that 0 < s, s’ < n/2 and thus d > 0)

(2.1) tgs =dtgs'.

We call d the parameter of distribution of the line L with respect to the point of
striction 1. It is obvious that the parameter of distribution of L with respect to I,
is equal to 1/d. Remark that in (2.1) s’ is also the angle between the tangent space of
the G.R.S. at I, and at the variable point p of L.

Next, in order to obtain informations about the Riemann curvature of the G.R.S.
we combine (2.1) with (1.2): from (2.1) we obtain after differentiation ds/cos® s'=
= d(ds’/cos? s") and because of (1.2) we find immediately the following:
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Suppose that Y, is a unit vector of the G.R.S. tangent to Lat p and that £, is the
unit normal vector at p on N in the G.R.S., then the Riemann curvature K(Yp, fp)
of the G.R.S. is given by

cos* s’ a?
2.2) KYp ) =1- =l o =
d? cos* s (sin® s 4 d? cos? s)

(cos? s + d* sin? s')?
_ . )

=1

At the point of striction I, of L we have K(Y,,,¢,) =1 — d* and at [, we find
K(Yh’ éll) = (dz - 1)l/dz

Remark. Suppose that a two-dimensional direction of the tangent space of the
G.R.S. at p is given by the unit vector Y, € N, and an orthogonal unit vector Z, =
= cos 0¢, + sin Oe,, with e, € N, then we proved in [6] that the Riemannian cur-
vature K(Y,, Z,) of the G.R.S. is given by

K(Y,, Z,) = sin® 0 + K(Y,, &,) cos® 0.

So, we find here, because of (2.2):

d? cos? 0
K(Y,Z)=1- —, s
(sin® s + d* cos? 5)
Next, there is in the general case just one polar simplex s, ..., s, in N (i.e. a simplex
such that the distances in N between s; and s, ..., §;, ..., s, are n/2, i=0,..n)

such that f(s), ..., f(s,) is a polar simplex in f(N). The vertices s, ..., s, are called
the points of striction of N. For each complete geodesic L of N through a point of
striction s;, s; is a point of striction of L, while the other point of striction of Lis the
intersection of L with the (n — 1)-dimensional complete totally geodesic subspace
of N (or of E"') through so, ..., §;, ..., s,. In particular for the sides S;; = s;s;,
i *j,i,j =0,...,n of the simplex, s; and s; are the points of striction of S;; and we
denote the parameter of distribution of S;; with respect to s; by d;;. These d;;, i,j =
=0, ..., n,i % jare called the principal parameters of distribution of the generating
space N and the sides S;; are called the principal axes in N.

Next, assume that we have in E™ a projective coordinate system such that s,. ..., s,
are the first n + 1 base points and that I" has again the equation x3 + ... + x2 = 0.
Working in the n-dimensional space N, we write only the first n + 1 coordinates of
the points (all the others are zero). So we have s54(1,0, ..., 0), 54(0, 1,0, ...,0), ...
.50, ...,0,1) and the absolute hyperquadric I' "N in N has the equation
x5 4 ... + x2 = 0. The absolute hyperquadric I'" of N” has an equation of the form

n
Y aix} =0,a;>0,i=0,...,n If we consider on the principal ax So; = 545,
i=0

a variable point p(1,1,0,...,0), a straightforward calculation (such as we have
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done before) shows that if s is the distance between s, and p in N and s’ is the distance
between s, and p in N', then tgs =1 and tgs' = (a,/a,) t. Moreover we know that
tgs = do; tgs’ and thus do, = aofa;. In the same way we find d;; = a,fa; i,j =
=0,...,n, i+ jand from this we see that the equation of I’ with respect to this
projective coordinate system of N is for instance given by x2 + d?,x? + ...
oot d2xZ =0 or djx3 + x7 +d3x}+ ...+ d}x? = 0 and so on.... Moreover,
in the general case, the principal parameters of distribution of the generating space N
are related by n? independant relations, namely

d;=1/d;, i,j=0,..,n, i<j and (forinstance) doddy =1,

r,h=1,..,n, r<h.

Next, we have the following relation between the scalar curvatures r(s,-), i=0,...
of the G.R.S. at the points of striction s, ..., s, of the generating space N:

(23) > =1

Proof. Because of (2.2), a straightforward calculation shows that

r(s)=n(n+1)—2%d}.
ja
Put x' = }(n(n + 1) — r(s;)), and eliminate the n(n + 1) parameters d,,, r,h =
= 0,...,n,r & hout of the following system of equations

ji s

n

xt=Ydy, i=0,..,n,
Jj=0
Jj¥i

dékdl%fd;o=1, k,f=1,..,n, k<f,
drzhzl/di,, hr=0,...n, h<r.

We find
1

P |

n (1] n
0 x° + 1
x° = or
kgl x+1 h;o

.—_1’

which completes the proof.
Remarks 1. Since
n?4+n+2- r(s,-)=2iodfi +2,
j=
ki
none of the denominators in (2.3) can be zero.

2. From the foregoing we see now when we have the general case: I'” is in general
position with respect to I' n N iff the principal parameters of distributions are
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mutually different strict positive numbers which are moreover all different from +1.
In order to have this, it is sufficient because of the relations connecting the principal
parameters of distribution, to assume that for instance dy, ..., dy, are mutually
different and all different from +1.

3. If we are not in the general case, then for instance, we can have more than n + 1
points of striction in N. Consider the case where d;; =1, i,j =0,...,n, i # j,
then f: N — f(N) is an isometry and each point of N can be considered as a point
of striction of N. In this case it is not difficult, because of (2.2), to see that the scalar
curvature of the G.R.S. is equal to n(n — 1) at each point of N and thus formula (2.3)
is still correct (for any n + 1 mutually different points of N).

4. For a non-developable ruled surface in E™, thus for n = 1, the foregoing is
also correct: we have now in general two points of striction sg, s; on the generator N
and along N the Riemannian curvature of the ruled surface is given by (2.2). Formula
(2.3) becomes now, if K(so) and K(s,) are the Riemannian curvatures of the ruled
surface at s, and s,: 1/(2 — K(so)) + 1/(2 — K(s;)) = 1. This is correct, because if
doy = d is the parameter of distribution of N with respect to sy, then K(s,) = 1 — d?
and K(so) = (d*> — 1)/d* because of (2.2).

Next, consider a geodesic S of N through so(l,O, ...,0) and assume that the
point of intersection of S with the totally geodesic subspace of N through s,, ..., s,
has coordinates (0, by, ..., b,). Then again an analogous calculation shows that the

parameter of distribution d of S with respect to s, is given by d> = (Y, b})/( 3. d}b]).
i=1 =1

Thus, if we take any point of striction s; of N, the geodesics of N through s; for which
the parameter of distribution with respect to s; are extremal, are the principal axes S;;,
j=0,..,1%, ..., n, through s, Moreover, because of (2.2), these S;; determine the
principal directions of N through s;. In connection with the lines of sectional curvature
of N we have the following:
Suppose that the points of striction s, ..., s, of N are again the base points of
a projective coordinate system in N such that I' n N has the equation x2 + ... + x2 =
= 0 and that I'" has the equation x2 + d?,x? + ... + d,x? = 0. Consider the class
of hyperquadrics of N given by
%o M40, keR.
1+k di +k di, + k

Through each real point p of N we have n real hyperquadrics of this kind and the lines
of sectional curvature of N through p are the intersection lines of each time n — 1
of these hyperquadrics.

Proof. Suppose that u,, ..., u, are tangential projective coordinates in N. The

n n
tangential equation of ) x7 = 0 (resp. x5 + djox] + ... + dioxZ = 0)is Y u} =0
i=0 i=0
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(resp. ug + (u}/d}o) + ... + (ui]d%) = 0 or uj + dgu} + ... + diu? = 0). The
tangential bundle determmed by these two tangential hyperquadrics is given by
uj(l + k) + ui(dd, + k) + ... + ul(ds, + k) = 0, ke R. The punctual equation
of this bundle is:

X X Xa

- + — ot
1+k d2 +k 2, +k

=0, keR.

Through a general point p (po, ..., p,) of N, we have n hyperquadrics X4, ..., Z, of
this bundle, respectively corresponding with mutually different values k,, ..., k, of k.
Thus we have

ri P,
D + ...+ “ =0, j=1,...,n
Fie) = 1+ k; d?,1 + k; g, + k;

Suppose that 1 < i; < i, < n, then

2 2
Po P
F;, - F,(p) = -+ +
(?) #) <(1 + k) (U+ k) (dgy + k) (doy + ki)

2
2 ), = k) = 0.

+
(don + ki) (don + ki)

Since k;, #+ k;,, this means that the tangent spaces of X; and X, at p are conjugate
with respect to I'. Next we have

2 2
Do d01
n\P) ki, F; (p) = ( +
’ (L + k) (1 + k) (doy + ki) (do + k‘z)

Padon
" (d3, + ki) (d3, + ki2)> (= k) = 0,

which means that the tangent spaces of Z; and X;, at p are also conjugate with respect
to I'". So, we see that the tangents at p of the n intersection curves o; of 24, ..., £,, ...

., 2, through p, i = 1, ..., n, are mutually orthogonal in N and in N’. This completes
the proof.

Remark that the lines of sectional curvature through a point of striction of N
are the principal axes of N through that point.

Next, consider a point p of N and suppose that the unit vectors P‘, ..ry T, de-
termine the principal directions of N at p. If £, is the unit normal vector on N in the
G.R.S. at p, then we have

() = TIKG) = TK(T &) - 1),

and because of (1.3), we get the geometrical signification:

*(p) = (~1y (%)

616



But we also have the following: suppose that s, resp. s’, is the distance between p
n—1

and the point of striction s, in N, resp. in N’, and that 2, = [] d,, then, if s + n/2
j=o0
(and thus also s’ # 7/2):

(4) H(p) = (-1F o 29,

Proof. Consider an Euclidean n-space N with an orthonormal coordinate system
with origin 0 and use homogeneous coordinates (xo, ..., x,) with respect to this
coordinate system, such that the hyperplane at infinity has the equation x, = 0.
Suppose that we have in N a Cayley model of an elliptic geometry N’ of curvature
+1, with absolute hyperquadric given by xo/d,f0 + xPld2 4+ A xE A+
+ x2 = 0, then we proved in [4] that if @, resp. ', is a volume element of N, resp. N’,
ata point p of N and if s’ is the (elliptic) distance in N’ between p and 0, that («’[@)* =
= cos*"*? §'|9} (2.5). If we have in N an other Cayley model of an elliptic geo-
metry N of constant curvature + 1, with absolute hyperquadric given by Y x7 = 0,

i=0
then we have in the same way, if @ is a volume element at p of N and if s is the
(elliptic) distance in N between p and 0, that (w/@)* = cos?"*? 5 (2.6).

Since #'(p) = (—1)" (w'|w)?, since for a finite point p of N s  7/2 and 5" % =2

and since 0 has coordinates (0, ..., 0, 1) formula (2.4)) follows from (2.5) and (2.6).

Remark that in (2.4), s’ is the angle in E™ between the tangent spaces of the G.R.S.
at p and at s,.

An analogous formula for (p) can be obtained using any point of striction of N.

In particular, if 2; = H d;

]#t

H(s;) = (=12, i=1,..,n.

ij» we have at s;:

As a corollary we get:

O.Di"(si) = +1.

1]

i

Next, because of (1.3) we find here also, such as in the “Euclidean case”, that

JA? (J(=1)" o) w is equal to the volume (= n-dimensional area) of an n-dimensional
half unit sphere. Thus, if n = 2f (f > 0), then

o gpreis (£ 1)
Lw(nﬂ 2ffw—n
and, if n = 2f + 1 (f 2 0), then

jw<nmw-wﬂ
1!
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Finally, remark that we also have immediately the analogous properties of the dual
G.R.S. (D.G.R.S.). We give some examples: if Lis any geodesic of N with points of
striction I, and [,, then f(1,) and f(I,) are the points of striction of the geodesic f(L)
of the generating space f(N) of the D.G.R.S. If d is the parameter of distribution of L
with respect to I;, then 1/d is the parameter of distribution of f(L) with respect to
f(l). If pe L,if Y, (resp. Yy ,) and &, (resp. &,(,) is a unit vector at p tangent to L
(resp. at f(p) tangent to f(L)) and the unit normal vector at p on N in the G.R.S.
(resp. at f(p) on f(N) in the D.G.R.S.), then the Riemann curvatures K(Y,, £,) of
the G.R.S. and K(Y(,, &;(,) of the D.G.R.S. are related by (if both are not zero.)
1K(Y,, &,) + 1/K(Y;(p) &s(py) = 1. Moreover we have K(Y,,&,) = 0< K(Y,),
€rm) = 0.

If sy, ..., s, ate the points of striction of N and d;; the principal parameters of dis-
tribution, then f(so), ..., f(s,) are the points of striction of f(N) and the principal
parameters of distribution d;; of f(N) are given by d;; = d ;.

At corresponding points we have o(p) = 1/o(f(p)), etc. ...
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