[1] Banach S.:
Théorie des Opérations Linéaires. Warsaw, 1932.
Zbl 0005.20901
[2] Brockett R. W.:
Lie algebras and Lie groups in control theory. Geometric Methods in System Theory, Reidel, Boston (1973), 43-82.
Zbl 0305.93003
[3] Dieudonné J.:
Foundations of Modern Analysis. Academic Press, New York and London (1960).
MR 0120319
[4] Graham G.: Manifolds with Generalized Boundary and Diflferentiable Semigroups. Ph.D. Thesis, University of Houston, 1979.
[5] Graham G.:
The Lie theory of differentiable semigroups. (to appear).
MR 0724628
[7] Hille E., Phillips R. S.:
Functional Analysis and Semigroups. Am. Math. Soc, Providence (1957).
MR 0089373 |
Zbl 0078.10004
[8] Hirschorn R.:
Topological semigroups, sets of generators and controllability. Duke Math. J., 40 (1973), 937-947.
MR 0325837 |
Zbl 0285.22001
[10] Kelley J. L.:
General Topology. Graduate Texts in Mathematics, vol. 27, Springer-Verlag, New York, Heidelberg, and Berlin.
MR 0370454 |
Zbl 0518.54001
[11] Lang S.:
Introduction to differentiable manifolds. Interscience, New York (1967).
MR 0155257
[14] Nashed M. Z.:
Differentiability and related properties of nonlinear operators: Some aspects of the role of differentials in nonlinear functional analysis. Nonlinear Functional Analysis and Applications, L. B. Rail, ed., Academic Press, New York (1971), 109-309.
MR 0276840
[15] Nashed M. Z.:
Generalized inverse mapping theorems and related applications of generalized inverses in nonlinear analysis. Nonlinear Equations in Abstract Spaces, V. Lakshmikantham, ed.. Academic Press, New York (1978), 217-252.
MR 0502545 |
Zbl 0452.47073
[17] Vainberg M. M.:
Variational Methods for the Study of Nonlinear Operators. Holden-Day, San Francisco, (1964).
MR 0176364 |
Zbl 0122.35501