[1] S. Fučík, Nečas J., Souček J., Souček V.:
Spectral Analysis of nonlinear Operators. Springer Verlag. Berlin (1973).
MR 0467421
[2] Canfora A.:
La teoria del grado topologico per una classe di operatori non compatti in spazi di Hilbert. Ric. di Mat. vol. XXVIII, 109- 142 (1979).
Zbl 0428.47033
[3] Pacella F.:
Il grado topologico per operatori non compatti in spazi di Banach con il duale strettamente convesso. Ric. di Mat., vol. XXIX, 211-306 (1980).
Zbl 0474.47030
[4] Nečas J.:
Sur I'aternative de Fredholm pour les operateurs non-lineaires avec applications aux problèmes aux limites. Ann. Scuola Norm. Sup. Pisa, 23, 331-345 (1969).
MR 0267430
[5] Fučík S.:
Note on Fredholm alternative for nonlinear operators. Comment. Math. Univ. Carolinae, 72, 213-226 (1971).
MR 0288641
[6] Nečas J.:
Remark on the Fredholm alternative for nonlinear operators with application to nonlinear integral equations of generalized Hammerstein type. Comm. Math. Univ. Carolinae, 13, 109-120 (1972).
MR 0305171
[7] Petryshyn W. V.:
Nonlinear equations involving noncompact operators. Proc. Symp. Pure Math. Vol. 18, Part I, Nonlinear functional Analysis, Rhode Island (1970).
MR 0271789 |
Zbl 0232.47070
[10] Pucci C., Talenti G.:
Elliptic (second-order) Partial Differential Equations with Measurable Coefficients and Approximating Integral Equations. Advances in Mathematics, 19, 48-105 (1976).
DOI 10.1016/0001-8708(76)90022-0 |
MR 0419989
[11] Chicco M.:
Solvability of the Dirichlet problem in $H\sp{2},\,\sp{p}(\Omega )$\ for a class of linear second order elliptic partial differential equations. Boll. U.M.I. (4), 374-387 (1971).
MR 0298209