Previous |  Up |  Next

Article

References:
[1] S. Fučík, Nečas J., Souček J., Souček V.: Spectral Analysis of nonlinear Operators. Springer Verlag. Berlin (1973). MR 0467421
[2] Canfora A.: La teoria del grado topologico per una classe di operatori non compatti in spazi di Hilbert. Ric. di Mat. vol. XXVIII, 109- 142 (1979). Zbl 0428.47033
[3] Pacella F.: Il grado topologico per operatori non compatti in spazi di Banach con il duale strettamente convesso. Ric. di Mat., vol. XXIX, 211-306 (1980). Zbl 0474.47030
[4] Nečas J.: Sur I'aternative de Fredholm pour les operateurs non-lineaires avec applications aux problèmes aux limites. Ann. Scuola Norm. Sup. Pisa, 23, 331-345 (1969). MR 0267430
[5] Fučík S.: Note on Fredholm alternative for nonlinear operators. Comment. Math. Univ. Carolinae, 72, 213-226 (1971). MR 0288641
[6] Nečas J.: Remark on the Fredholm alternative for nonlinear operators with application to nonlinear integral equations of generalized Hammerstein type. Comm. Math. Univ. Carolinae, 13, 109-120 (1972). MR 0305171
[7] Petryshyn W. V.: Nonlinear equations involving noncompact operators. Proc. Symp. Pure Math. Vol. 18, Part I, Nonlinear functional Analysis, Rhode Island (1970). MR 0271789 | Zbl 0232.47070
[8] Adams R.: Sobolev spaces. Academic Press (1975). MR 0450957 | Zbl 0314.46030
[9] Schechter M.: Principles of functional analysis. Academic Press New York (1971). MR 0445263 | Zbl 0211.14501
[10] Pucci C., Talenti G.: Elliptic (second-order) Partial Differential Equations with Measurable Coefficients and Approximating Integral Equations. Advances in Mathematics, 19, 48-105 (1976). DOI 10.1016/0001-8708(76)90022-0 | MR 0419989
[11] Chicco M.: Solvability of the Dirichlet problem in $H\sp{2},\,\sp{p}(\Omega )$\ for a class of linear second order elliptic partial differential equations. Boll. U.M.I. (4), 374-387 (1971). MR 0298209
Partner of
EuDML logo