[1] R. E. Edwards G. I. Gaudry:
Littlewood-Paley and multiplier theory. Springer, Berlin-Heidelberg-New York, 1977.
MR 0618663
[3] С. Fefferman E. M. Stein:
$H^p$ spaces of several variables. Acta Math., 129 (1972), 136- 193.
MR 0447953
[7] V. I. Ivanov:
Direct and inverse theorems of approximation theory in the metric $L_p$ for $0 < p < 1$. Mat. Zametki, 18 (1975), 641 - 658 (in Russian).
MR 0412710
[8] S. M. Nikolskij:
Approximation of functions of several variables and imbedding theorems. Nauka, Moskva, 1977 (in Russian).
MR 0506247
[9] P. Oswald:
Approximation by splines in the metric $L_p$, $0 < p < 1$. Math. Nachr., 94 (1980), 69-96 (in Russian).
MR 0582521
[11] J. L. Rubio de Francia:
Vector valued inequalities for Fourier series. Proc. Amer. Math. Soc., 78 (1980), 525-528.
MR 0556625
[12] H.-J. Schmeisser W. Sickel:
On strong summability of multiple Fourier series and smoothness properties of functions. Anal. Math., 8 (1982), 57-70.
DOI 10.1007/BF02073772 |
MR 0662704
[14] E. M. Stein:
Singular integrals and differentiability properties of functions. Princ. Univ. Press, Princeton, 1970.
MR 0290095 |
Zbl 0207.13501
[15] E. M. Stein G. Weiss:
Introduction to Fourier analysis in Euclidean spaces. Princ. Univ. Press, Princeton, 1971.
MR 0304972
[16] E. A. Storoženko:
Approximation of functions of the class $H^p$, $0 < p < 1$. Mat. Sbornik, 105 (147) (1978), 601-621 (in Russian).
MR 0496597
[17] E. A. Storoženko:
On theorems of Jackson type for $H^p$, $0 < p < 1$. Izv. Akad. Nauk SSSR, Ser. mat., 44 (1980), 948-962 (in Russian).
MR 0587344
[18] E. A. Storoženko V. G. Krotov P. Oswald:
Direct and inverse theorems of Jackson type in the spaces $L_p$, $0 < p < 1$. Mat. Sbornik, 98 (140) (1975), 395-415 (in Russian).
MR 0402384
[19] M. H. Taibleson: On the theory of Lipschitz spaces of distributions on Euclidean $n$-space I, II. J. Math. Mech., 13 (1964), 407-479; 14 (1965), 821-839.
[20] W. Trebels:
Multipliers for $(C, \alpha)$-bounded Fourier expansions in Banach spaces and approximation theory. Lect. Notes Math., 329, Springer, Berlin-Heidelberg-New York, 1973.
DOI 10.1007/BFb0060959 |
MR 0510852
[21] H. Triebel:
Interpolation theory, function spaces, differential operators. Deut. Verl. Wiss., Berlin, 1978.
MR 0500580 |
Zbl 0387.46033
[22] H. Triebel:
Fourier analysis and function spaces. Teubner-Texte Math., Teubner, Leipzig, 1977.
MR 0493311 |
Zbl 0345.42003
[23] H. Triebel:
Spaces of Besov-Hardy-Sobolev type. Teubner-Texte Math., Teubner, Leipzig, 1978.
MR 0581907 |
Zbl 0408.46024
[24] H. Triebel: Periodic spaces of Besov-Hardy-Sobolev type and related maximal functions for trigonometrical polynomials. Forschungsergebnisse FSU Jena, N/80/11, 1980.