[1] E. Asplund:
Differentiability of the metric projection in finite-dimensional Euclidean space. Proc. Amer. Math. Soc. 38 (1973), 218-219.
MR 0310150 |
Zbl 0269.52002
[2] J. Dieudonné: Éléments d'analyse, Tome I: Fondements de l'analyse moderne. Paris 1972.
[5] V. Jarník: Differential Calculus II. Prague 1956 (Czech).
[6] P. S. Kenderov:
Points of single-valuedness of multivalued monotone mappings in finite dimensional spaces. Serdica 2 (1976), 160-164.
MR 0477890 |
Zbl 0346.47044
[7] S. V. Konjagin:
Approximation properties of arbitrary sets in Banach spaces. Dokl. Akad. Nauk SSSR, 239 (1978), No. 2, 261-264 (Russian).
MR 0493113
[11] C. J. Neugebauer:
A theorem on derivatives. Acta Sci. Math. (Szeged). 23 (1962), 79-81.
MR 0140624 |
Zbl 0105.04602
[14] S. Stečkin:
Approximation properties of sets in normed linear spaces. Rev. Math. Pures Appl. 8 (1963), 5-18 (Russian).
MR 0155168
[15] Z. Zahorski:
Sur l'ensemble des points de nondérivabilité d'une fonction continue. Bull. Soc. Math. France, 74 (1946), 147-178.
DOI 10.24033/bsmf.1381 |
MR 0022592
[16] L. Zajíček:
On the points of multivaluedness of metric projections in separable Banach spaces. Comment. Math. Univ. Carolinae 19 (1978), 513 - 523.
MR 0508958