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1. INTRODUCTION

We will consider a real finite-dimensional Banach space X and a nonempty closed
set M < X. For x € X denote by dy(x) the distance from the point x to the set M.
The metric projection P,, of the space X on the set M is defined as the (possibly)
multivalued operator Py(x) = {ye M; |x — y| = dy(x)}. Of course, since X is
finite dimensional, we always have Py (x) + 0. If Py, is singlevalued at a point x,
Py(x) = {P}, we will write also Py,(x) = P. The symbol E, denotes the n-dimensional
Euclidean space.

Kruskal [8] constructed a closed convex subset M of E; for which there exists
a point x € E; and a vector v € E;, v # o, such that the directional derivative

D, Pu(x) := lim (Py(x + ht) = Pu(x)) b

does not exist. He asked whether for any closed convex set M < E, the set of the
pairs (x, v) for which D, Py,(x) exists is dense in the space E, x {v; |[v]| = 1}. Asplund
[1] showed that the answer is affirmative. In fact he proved that if M < E, is an
arbitrary closed set, then P, is Frechet differentiable at almost all points x € E,,.
(Note that in the present article we use an extended notion of the Frechet differen-
tiability for multivalued operators (see Definition 3).) In the same article Asplund
raised the problem of characterization of finite dimensional spaces in which any
metric projection on a closed set is almost everywhere Frechet differentiable. (Note
that the answer to Kruskal’s question (M convex) follows easily from the fact that
for convex M, P, is a contraction and therefore is a.e. Frechet differentiable.)

In Section 2 of the present article we construct an example (see Theorem 1) of
a comipact convex set M < E, such that the set of all points x ¢ M at which all direc-
tional derivatives D, PM(x) exist is of the first category. This example also shows that
the set of all pairs (x, v) for which D, Py(x) exists can be of the first category in
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(E; — M) x {v; |v]| = 1}. The construction of this example is based on the well
known [15] example of a Lipschitz function f: E; — E, which is nondifferentiable
at all points of a residual set.

Further, we give a partial solution of Asplund’s problem. We prove that any metric
projection on a closed set is almost everywhere Frechet differentiable in any strictly
convex two dimensional Banach space (Theorem 3) and in any finite dimensional
Banach space with a norm which is in a sense (see Definition 4) Euclidean-like
(Theorem 4). The theorems are proved by the same rather simple method using the
auxiliary notion of an a-monotone operator.

I do not know whether there exists a finite dimensional strictly convex Banach
space X and a closed nonvoid set M < X such that the metric projection P, is not
Frechet differentiable at almost all points. (Note that if X is not strictly convex
then there exists a hyperplane M < X such that P, is singlevalued at no point from
X — M [14])

2. A COUNTEREXAMPLE

For a closed set M < E, denote by N,, the set of all points at which P,, is not
Frechet differentiable. By Asplund [1], N,, is of Lebesgue measure zero. Naturally
the question arises whether N,, is always a set of the first category. We will construct
an example which shows that the answer is negative. In fact we will prove the fol-
lowing stronger theorem.

Theorem 1. T here exists a compact convex set M < E, and a set A< E, — M
of the first category such that for any point x€ E, — (M U A) the directional
derivative D, Py(x) exists only for v of the form v = A(Py(x) — x).

Proof. It is well known that there exists a Lipschitz function g defined on (0, 1)
and a set D < (0, 1) of the first category such that for x € (0, 1) — D the derivative
g'(x) does not exist (see e.g. [15] or [10]). For a construction of such a function it is
sufficient to choose a measurable set E < (0, 1) such that for any open interval
I < (0,1) the inequality 0 < u(E n1I) < ul holds, and to put g(x) = [§ x(1) dt.
Since by [11] the set of points x at which g/, (x) or g_(x) exists and g'(x) does not
exist is a set of the first category we conclude that there exists a set C < (0, 1) of the
first category such that at x € (0, 1) — C neither g’(x) nor g’ (x) exist. Now define
the function f on <0, 1) by the equation f(x) = [ g(7) dz. The function f is obviously
increasing and convex on <0, 1) and f' = g on (0, 1), f(0) = 0, f1(0) = 0,0 < f(1),
0 < fZ(1) < co. Therefore there exist unique numbers ¢ > 0, d > 0 such that for
the function h(x) := ¢ f(x) — d the identities h(1) = —1, h(1) = 1 hold. Let B be
the smallest set which contains the graph of the function h and which is symmetric
with respect to the lines x = 0, y = 0, y = —x, y = x. The set B obviously is the
boundary of a compact convex set M and B has at any point x € B a tangent line which
depends continuously on x. For 0 < x < 1 put P(x) = (x, h(x)) and denote by n(x)
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the unit vector of the outer normal to M at P(x). Let xo€(0, 1) — C and let p, ¢ B
be a point which lies on the outer normal to M at P(x,). Let v € E, be a unit vector,
v * n(x,), v = —n(x,). We will show that the directional derivative D, Py(p,) does
not exist. Obviously, for sufficiently small ¢ there exists one and only one point x(r)
such that Py,(py + tv) = P(x(¢)). We will further suppose that v is such a vector that
A(v, n(xo)) = p < m/2 and that 1 > 0 implies x(r) > x,. The other cases are quite
similar. Now suppose on the contrary that D, Py(p,) exists. Then the function x(r)
has a finite right derivative at the point 1 = 0 and therefore the inverse function 1(x)
has a finite or infinite right derivative at the point x,. Let u(x) be the common point
of the rays {P(x) + n(xo) 4, A = 0}, {po + vi, 2 = 0} and let v(x) be the common
point of the rays {P(x) + n(x)4, 2= 0}, {po + v4, 2 = 0}. Thus the functions
u(x), v(x) are defined for xe<{xq, xo + 0y, where & > 0 is a sufficiently small
number. Put a(x) = o(po, u(x)), b(x) = o(u(x), 1(x)), z(x) = o(P(x), u(x)) and o(x) =
= arctg h’(x) for xe<xy, xo + 0). Elementary geometric observations give the
following relations for x € (x,, Xo + 0):

a(x) = cos (n/Z — a(xo) — arc

T )) T = o) + (h(x) -
— h(x0))*] sin™' B,

(1 z(x) = o(po, P(x¢)) + sin (n/2 — a(x,) — arctg N _"_0_‘)

h(x) — h(x,)

I = x0)? + (h(x) — h(x))?] + COS( 1/2 — a(xg) — arctg — -0 _ >

h(x) — h(x,)
VI = x0)? + (h(x) = h(x0))?] cotg B,
2 b(x) = z(x) sin (a(x) — a(xo)) sin™*(B + ofxe) — o(x)) .

A simple calculation gives a’,(xo) = /[1 + (h'(x,))*] sin™"' B. Since b(x) = #(x) —
— a(x), we obtain that b’(x,) exists (finite or infinite). From (1) it follows that
2 (x0) = /[1 + (K'(xq))*] cotg B. Put ¢(w) = sin (w — a(x,)) sin™' (B + o(x,) —
— w). From (2) it follows that ¢(a(x)) has a finite or infinite right derivative at x,.
Since ¢'(a(x,)) = sin™! B we easily infer that o’,(x,) exists (finite or infinite). There-
fore (')} (xo) = g’ (x¢) exists, a contradiction.

Denote by Q the set of all points g ¢ M for which P,,(q) e Graph h. For g€ Q
denote by x(q) the point from <0, 1) such that Py(q) = (x(q), h(x(q))). We have
shown that if g€ Q° and x(q) ¢ C, then the directional derivative D, Py(q) exists
only for v the form v = A(Py(q) — g). It is an obvious fact that x(q): @ — <0, 1)
is a continuous open surjective mapping. Therefore x™'(C U {0} U {1}) is a set of
the first category in Q (and consequently in E,). Let 4 be the smallest set which con-
tains the set x™!(C U {0} U {1}) and is symmetric with respect to the lines x = 0,
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y =0, y= —x, y = x. The symmetry of M implies that A has all the properties
from the statement of the theorem.

Corollary. There exists a compact convex set M < E, such that the set of all
pairs (x,v) for which D, Py(x) exists is a set of the first category in the space
(E; — M) x {veE,; |of| = 1}.

Proof. The mapping

Py(x) — x
of =1}, S = e

[Prlx) = ]
is continuous and therefore Graph f is a set of the first category in (E, — M) x
x {ve E,; |v]| = 1}. Theset 4 x {ve E,; |v| = 1} is also a set of the first category
in that space. Thus Corollary immediately follows from Theorem 1.

fi E,— M {veE,;

3. THE FRECHET DIFFERENTIATION OF a-MONOTONE OPERATORS

Asplund [1] showed that for an arbitrary closed set M < E, there exists a convex
function g defined on E, such that for any point x € E, the subdifferential dg(x)
includes the set Py(x). Therefore the Buseman-Feller-Alexandrov theorem on the
second differentiation of convex functions implies that P, is almost everywhere
Frechet differentiable. In Mignot’s paper [10] it is proved that any (maximal) mono-
tone operator in E, is almost everywhere Frechet differentiable. Since a subdifferential
of a convex function is a monotone operator, Mignot’s theorem yields a new simple
proof of the Buseman-Feller-Alexandrov theorem. Kenderov [6] showed that there
is an easy direct proof of the fact that any metric' projection in E, is (cyclically)
monotone. This observation together with Mignot’s theorem give an alternative proof
of Asplund’s theorem mentioned above. The main idea of the present article is the
observation that this alternative proof works also in some non-Euclidean spaces.
Instead of monotone operators we use o-monotone operators defined below.

Notation. Let H be a 1eal Hilbert space. The for o + u € H and o % v € H we denote
by A(u, v) the angle between u and v. We put A(u, v) = 0ifu = 0 orv = 0.

Definition 1. Let H be a Hilbert space and T: H — H a (possibly) multivalued opera-
tor defined on a set D(T). Let 0 < o < 7/2. We say that Tis an a-monotone operator
ifforany x; € D(T), x, € D(T), y; € T(x,), y, € T(x,) wehave A(x, — x,y, — y1)<
if for any x; € D(T), x, € D(T), y, e T(x;), y, € T(x,) we have A(x, — x,
Va2 — )’1) St- o

Notes. (i) T is n/2-monotone iff it is monotone.
(ii) It is doubtful whether a-monotonicity is an important notion. However, it is
a very useful auxiliary notion for our forthcoming investigations.
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Lemma 1. Let H be a real Hilbert space. Let T: H — H be an a-monotone operator.
Then S = (I + T)™' is a Lipschitz (and therefore univalent) oprator.

Proof. Let xy,x,€D(S) and y, € S(x;), y,€S(x,). Then x,e(I + T)(yy),
x; €(I + T)(y,) Thus there exist z, € T(y,) and z, € T(y,) such that x, = y; + z,
and x, = y, + z,. The a-monotonicity of T implies A(z, — z;, y, — y;) S — .
Therefore from the equation x, — x; = (y, — ;) + (22 — z;) we easily deduce
that |x, — x,|| = ||y, — y:| sin o. Thus S is a Lipschitz operator.

Definition 2. We say that a (possibly) multivalued operator T: E, — E,, is continuous
at a point a € E,, if it is singlevalued at a and for any ¢ > 0 we have |T(a) — y| <&
whenever y € T(x) and |[x — a| is sufficiently small.

Definition 3. (see [10]). Let T: E, — E, be a (possibly) multivalued operator. We
say that T is (Frechet) differentiable at a point a € E, if it is singlevalued at a and
there exists a linear mapping L: E, — E, such that for any ¢ > 0 we have |y — T(a) —
— L(x — a)| £ ¢|x — a| whenever ye T(x) and ||x — a| is sufficiently small.
The mapping Lis called the differential (or derivative) of f at a and is denoted by
T'(a).

Notes. (i) If Tis defined and singlevalued on a neighbourhood of a, then Definition
3 coincides with the usual definition of the Frechet differentiability.

(i) If T is defined on no neighbourhood of a point a, then L = T'(a) is not
necessarily unambiguously determined.

(iii) If Tis differentiable at a point a, then T is continuous at a.

(iv) If T and S are differentiable at a point a, then the operator T + S (defined
on D(T) n D(S)) is also differentiable at a.

Lemma 2. Let T: E, —» E, be a multivalued operator which is continuous at a point
a€E,. Let the inverse operator S := T~* be differentiable at b := T(a) with the
differential M = S'(b) which is an isomorphism of E, onto E,. Then T is dif-
ferentiable at a with the differential L := M~

Proof. Let xe E, and y € T(x). Put x — a = Ax and y — b = Ay. If we define R
by the equation

(3) Ax = M(Ay) + R,
then we deduce from the differentiability of S that for any n > 0 we have
4 |R| <n|Ay| whenever ||Ay|| si sufficiently small.

From (4) and from the continuity of Tat a we obtain that |R|| < ||Ay|/2|L| whenever
[Ax| is sufficiently small. Consequently, we have by (3)

6 [ax] z [M@y)] = [R] > [avl/IL] = [avl2lL] = |ay]/2]L] -
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By (3) we obtain that
(6) Ay = L(Ax) — L(R).

From (4) and (5) it easily follows that for any & > 0 we have |L(R)| < &|Ax||
whenever |Ax]| is sufficiently small. Therefore by (6) T'is differentiable at a.

Proposition 1. Let T: E, — E, be an a-monotone operator. Then T is differentiable
at almost all points at which T is continuous.

Proof. By Lemma 1, S:= (I + T)™' is a Lipschitz operator. Therefore there
exists [9] a Lipschitz extension S of S defined on the whole E,. Let N, be the set of
all points at which S is not differentiable and N, the set of all points x at which S is
differentiable but the differential S'(x) is not an isomorphism of E, onto E,. It is
well known (see Theorem 3.2.3 from [4] or Proposition 1.2 from [10]) that S(N, u
U N,) is a set of Lebesgue measure zero. Let x ¢ S'(N1 U N,) be a point of continuity
of T. Then I + T is continuous at x and S has at the point: (I + T)(x)¢ N; U N,
a differential which is an isomorphism of E, onto E,. Therefore by Lemma 2, + T
is differentiable at x and consequently T is differentiable at x as well. The proof is
complete.

4. THE FRECHET DIFFERENTIATION OF METRIC PROJECTIONS

In the following we will investigate a finite dimensional real Banach space X which
we will consider as E, with a nonEuclidean norm g = ||... |, The Euclidean norm
is denoted by e or || e ”e The metric induced by g or by e is denoted by g, or by g,
respectively. The angles and the a-monotonicity are taken with respect to the Euclidean
scalar product.

It is a simple fact [14] that if X is not strictly convex, then there exists a hyperplane
M < X such that Py, is multivalued at any point x € X — M and therefore P,, is not
differentiable almost everywhere.

If X is strictly convex, then for any closed M < X (see [7] or [16]), Py is single-
valued at all points except a set A, of o-finite (n — 1)-dimensional Hausdorff
measure (and consequently of Lebesgue measure zero) which is also of the first
category. It is easy to see that at any point x ¢ 4,, the operator P, is continuous.
In fact, if x, — x and p, € Py/(x,), ¥, + Pp(x), then there exists a subsequence of k,
which converges to a point y € M, y % Py(x). Now the continuity of g, implies
0,(x, ¥) = ¢,(x, Py(x)), which is a contradiction.

The problem arises whether a metric projection on a closed subset of a strictly
convex space X is always almost everywhere Frechet differentiable. The differen-
tiability of P, at almost all points of M (in an arbitrary X) is an easy consequence
of the well known Lebesgue density theorem [13]. In fact, almost all points x e M
are points of (ordinary) density of M and at each such a point x the metric projec-
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tion Py, has the differential Pj(x) = I (cf. the proof of Theorem 2 from [3]). For
points x ¢ M the problem seems to be very difficult and we give a partial solution
only. We start our investigation with the following simple theorem.

Theorem 2. Let M = X be a closed set and let Py, be Frechet differentiable at
a point x ¢ M. Then Py(x) is not an isomorphism of X onto X.

This theorem is an easy consequence of the following simple lemma. Note that
Lemma 3 is a consequence of the more complicated Lemma 4 but we will also give
a short proof of Lemma 3.

Lemma 3. Let M <= X be a closed set and let Py, be singlevalued at a point x ¢ M.
Let x' # x and P’ e Py(x'), P’ & Py(x). Put Ax = x' — x, P = Py(x), AP =
=P — P and z = P — x. Then there exists y > 0 such that A(Ap, Z)<m—7y
whenever Ax is sufficiently small.

Proof. The set C:= {y;g,(x,y) < ¢,(x, P)} is an open convex set. Therefore
there exists y > 0 such that y € C whenever A(y — P,z) 2 n —y and ||y — p|, is
sufficiently small. Since P’ ¢ C and P, is continuous in x we obtain that A(AP, z) <
< m — y whenever Ax is sufficiently small.

Lemma 4. Let M < X be a closed set and let P, be singlevalued at a point
Xo ¢ M. Then there exists p > 0 and a neighbourhood U of x, such that whenever
x, X' €U, PePy(x), P'€ Py(x') and P + P, then

n— 2 AAP,2) 2 B,
where we put AP = P' — Pand z = P — x.

Proof. Put zy = Py(Xo) — x,. Since (see 24.5.1 of [12]) D, q(f) is an upper
semicontinuous function on E, x E, and D_,, q(z,) < 0, there exists 0 < § < |z,
such that

(7) D,q(t) <0 whenever g,(zo,1) <6 and o (—zp,v) <.

Put ¢ = arcsin (6/||zo[,) and B = ¢/2. Choose a neighbourhood U of x, and an open
ball B with the center in Py(x,) such that for any x € U, P e Py(x) and y € B we
have P e B, ¢(y — X, zg) < 6 and A(y — X, zo) < B. Let now x, x' € U, P € Py(x),
P’ € Py(x') and put AP = P' — P, Ax = x' — x, z = P — x. We will prove that

(i) A(AP,z) = B and

(i) A(AP,z) < m — p.

(i) Suppose on the contrary that A(AP,z) < B. Since A(z,z,) < p we have
A(AP, z,) < ¢ and therefore by the definition of ¢ there exists 4 > 0 such that
0(—4 AP, —z,) < 6. Since (2, 2 — Ax) = g,(z9, P — x') < 8, we have by (7)
D_;apq(z — Ax) < 0 and consequently D,pq(z — Ax) > 0. The convexity of g
further yields

a(z — Ax + AP) > gq(z — Ax) -
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and consequently
0P + AP, x + Ax) > ¢,(P, x + Ax),

which is a contradiction since P + AP € Py, (x + Ax) and P e M.

(ii) Suppose on the contrary that A(AP, z) > n — B. Then A(AP, —z) < B and
since A(z, zo) < B, we have A(AP, —z,) < 0. Consequently, there exists A > 0
such that g,(A AP, —z,) < 6. Let now y be a point from the segment joining P and P'.
Then y € B and therefore ¢(y — x, z,) < 8. Using (7) we obtain D,,pq(y — x) < 0
and consequently g(P — x) > g(P — x 4+ AP). In other words, g,(P, x) > g,(P’, x)
and this is a contradiction. The proof of the lemma is complete.

Proposition 2. Let X be a two-dimensional strictly convex Banach space and let
M =+ 0 be a closed subset of X. Let Py, be singlevalued at a point xy ¢ M. Then
there exists an open neighbourhood V of x, and o > 0 such that P, is a-monotone
on V.

Proof. Choose f > 0 and a neighbourhood U of x, according to Lemma 4. Put
« = B[2 and choose an open neighbourhood ¥ of x, such that V < U and

®) |AP|, < sin«|z|, whenever x,x'eV

and AP, z are defined as in Lemma 4. Let now x, x' € ¥, P € Py(x), P’ € Pp(x"),
AP = P' — P, z = P — x. It is sufficient to prove that 4(Ax, AP) < — «. Sup-
pose on the contrary that this inequality does not hold. Then A(—Ax, AP) < a and
Ax # 0, AP + 0. By Lemma 4 we have

) B=<AAP,z)<m—p.

Denote by s the line joining the points x, P. Since A(—Ax, AP) < « we obtain by
(9) that the points P + AP, P — Ax, P + AP — Ax lie in the same halfplane de-
termined by the line s. Denote by p the line joining the points P, P + AP. Let A,
and A, be the common points of the line p and the line joining the point x with the
point P — Ax and P + AP — Ax, respectively. Obviously

(10) the point A4, lies between A, and P.
By (8), A(z + AP, z) < a and therefore (9) implies that
(11) the point P + AP lies between A, and P.

Since the line going through the points P — Ax, P — Ax + AP is parallel to the line p,
there exists @ > 0 such that

(12) q(P — Ax — x) = w g(4, — x) and

g(P + AP — Ax — x) = wg(4, — x).
Since P € Py(x) and P + AP e M, we obtain that g(P + AP — x) 2 g(P — x).
Therefore, using (10), (11) and the strict convexity of g, we obtain that
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q(4; — x) > g(4, — x)
and therefore by (12)

0/(P',x') = q(P + AP — Ax — x) > g(P — Ax — x) = ¢,(P, x)),

a contradiction.

Theorem 3. Let X be a two-dimensional strictly convex Banach space and let
0 = M < X be a closed set. Then P, is Frechet differentiable at almost all points
xeX.

Proof. Since X is strictly convex we obtain by [7] or [16] that P, is singlevalued
at any point x e X — S, where S is a set of Lebesgue measure zero. At the beginning
of the present section we have observed that P, is Frechet differentiable at almost all
points x € M. By Proposition 2, for any point xe X —(M u S) there exists a neighbour-
hood U, such that P,, is a-monotone on U,. Therefore from Proposition 1 it easily
follows that P, is Frechet differentiable at almost all points of (J{U,; xe X —
— (M U S)}. Thus Py, is Frechet differentiable at almost all points x € X.

Notation. We use the symbols D* f(a) (u, v) and A*f(a; hy, h,) for the second
derivative of a function f on E, at a point a € E, and the second difference of f at a,
respectively, in the sense of [2].

We will need the following simple lemma. It is a special case of Theorem 204
from [5].

Lemma 5. Let X be a finite dimensional Banach space and let G = X be an open
convex set. Let f be a real function on G which has at any point x € G the second
derivative D* f(x). Let a€ G, hy,h,e€X and a + hy, a + hy, a + hy + h, € G.
Then there exist 0 < u < 1,0 < v < 1 such that

A*f(a; hy, hy) = D*f(a + uhy + vhy) (hy, hy) .

Definition 4. Let X be a finite dimensional Banach space with a norm g which
belongs to the class C*(X — {o0}). We say that q is a Euclidean-like norm if D* q(x) .
. (h, h) > 0 for any linearly independent x =+ o, h * o.

Notes. (i) Any Euclidean-like norm is obviously strictly convex.
(ii) The Euclidean norm is Euclidean-like.

Proposition 3. Let X be a finite dimensional Banach space with a Euclidean-like
norm q. Let 0 = M < X be a closed set and let P, be singlevalued at a point
Xo ¢ M. Then there exist « > 0 and a neighbourhood U of x, such that P, is
a-monotone on U.

Proof. Recall that we consider X as E, with a norm g = |...|, whilee = ||...].
is the Euclidean norm on X. Put z, = P,(xo) — x, and choose, according to Lemma
4, the corresponding f > 0.
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Choose a compact convex set Y such that z, € Y°, 0 ¢ Y and
(13) A(y,zo) < p/4 forany yeY.

Using Lemma 4 and the continuity of P,, at x, we can choose a neighbourhood U
of x, such that for any x, x’ € U, P € Py(x), P’ € Py(x’) we have (we put AP =
=P —P,z=P—x)

(14) n—B=AAP,z) = if AP +0
and
(15) P—XeY°,

Put M =Yx {¢eX; ¢, =1, n—3B = Az, &) 2 3B}. If (y,E)e M then we
have y # o, & #+ o and by (13), A(y, zo) < /4. Therefore n — B[4 > A(y, &) > B4
and thus y, ¢ are linearly independent. Since g is Euclidean-like we obtain that the
function F(y, &) := D? q(y) (&, &) is a positive continuous function on the compact
set M and therefore there exists m > 0 such that

(16) D*q(y) (&, &) >m for (y,&)eM.
Similarly, there exists K > 0 such that
(17) ]DZ q(y) (¢, n)l < K whenever yeY and |¢f, = [n].=1.

Let 0 < o < arctg (m/K). We will show that P, is a-monotone on U. Suppose on
the contrary that there exist x,x’ € U and P e Py(x), P’ € Py(x) such that
A(Ax, AP) > n — o, where Ax =x"—x, AP=P — P and z=P — x. Con-
sequently, we have

(18) A(—Ax,AP) <o, Ax+0, AP *o.
Consider the second difference
A*q(z; AP, —Ax) = q(P — x + AP — Ax) — g(P — x + AP) —

—q(P — x — Ax) + q(P — x).
We have

g(P — x + AP — Ax) — q(P — x — Ax) = ¢(P', x') — (P, x") £ 0,
since P’ € Py(x") and P € M. Similarly,
g(P — x) — q(P — x + AP) = ¢,(P, x) — ¢,(P',x) £0.
Thus we obtain
(19) A%q(z; AP, —Ax) £ 0.
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On the other hand, by (15), all the points
P—x, P—-x+AP=P —x, P—x—Ax=P —x",
P—x+ AP — Ax =P — X

lie in Y°. Since g is a Euclidean-like norm and o ¢ Y we deduce from Lemma 5 that
there exist 0 < u < 1,0 < v < 1 such that

A%q(z; AP, —Ax) = D*q(P — x + u AP — v Ax) (AP, —AXx).

The convexity of Y implies that the point y = P — x + u AP — v Ax belongs to Y.
By (13) and (15) we obtain A(z, z,) < f[4 and by (14) and (18), © — f = A(AP, z) =
> p. Therefore © — 3 = A(AP, z,) = 3 and consequently, if we put & =
= AP|[|AP|,, we have (y, &) € M. Let s be the orthogonal projection of —Ax on the
one-dimensional subspace of X generated by AP and put r = —Ax — s. Then

(20 Irllsl. < miK
Putting # = r/|r|. we obtain
D? q(v) (AP, —Ax) = ||AP|. D* q(y) (&, 7 + 5) =
= [AP]. D2 a(y) (& [Irllem + [s]c ) =
= [AP[c (s] D* a(») (& €) + [r]. D* a(y) (& m) >
> 1Pl (Islle m = [r]le K)
where we have used (16) and (17). Using (20) we conclude that
Azq(z; AP, —Ax) = D* ¢4(y) (AP, —Ax) > 0,

and this is a contradiction with (19).

Theorem 4. Let X be a finite dimensional Banach space with a Euclidean-like
norm and let O = M < X be a closed set. Then P, is Frechet differentiable at
almost all points x € X.

Proof. If we write ““Proposition 3” instead of ‘“‘Proposition 2” in the proof of
Theorem 3 we obtain the proof of Theorem 4.
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