Previous |  Up |  Next

Article

References:
[1] N. Bourbaki: Elements de Mathematique, Livre III, Topologie Generale. Paris, Herman, 1951.
[2] G. E. Bredon: Sheaf Theory. McGraw Hill, New York, 1967. MR 0221500 | Zbl 0158.20505
[3] E. Čech: Topological Spaces. Prague, 1966. MR 0211373
[4] J. Dauns K. H. Hofmann: Representation of Rings by Sections. Mem. Amer. Math. Soc., 83, (1968). MR 0247487
[5] Z. Frolík: Structure Projective and Structure Inductive Presheaves. Celebrazioni arrchimedee del secolo XX, Simposio di topologia, 1964.
[6] J. Dugundji: Topology. Allyn and Bacon, Boston, 1966. MR 0193606 | Zbl 0144.21501
[7] A. N. Gelfand D. A. Rajkov G. E. Silov: Commutative Normed Rings. Moscow, 1960 (Russian).
[8] E. Hille S. Phillipps: Functional Analysis and Semi-Groups. Providence, 1957.
[9] J. L. Kelley: General Topology. Van Nostrand, New York, 1955. MR 0070144 | Zbl 0066.16604
[10] G. Koethe: Topological Vector Spaces, I. New York Inc, Springer Vlg., 1969. Zbl 0179.17001
[11] J. Pechanec-Drahoš: Representation of Presheaves of Semiuniformisable Spaces, and Representation of a Presheaf by the Presheaf of all Continuous Sections in its Covering Space. Czech. Math. Journal, 21 (96), (1971). MR 0487958
[12] J. Pechanec-Drahoš: Functional Separation of Inductive Limits and Representation of Presheaves by Sections, Part One, Separation Theorems for Inductive Limits of Closured Presheaves. Czech. Math. Journal.
[13] J. Pechanec-Drahoš: Functional Separation of Inductive Limits and Representation of Presheaves by Sections, Part Two, Embedding of Presheaves into Presheaves of Compact Spaces. Czech. Math. Journal 29 (104), (1949).
[14] J. Pechanec-Drahoš: Functional Separation of Inductive Limits And Representation of Presheaves by Sections, Part Three, Some Special Cases of Separation of Inductive Limits of Presheaves. Czech. Math. Journal 30 (105), (1980).
Partner of
EuDML logo