[1] N. Bourbaki: Elements de Mathematique, Livre III, Topologie Generale. Paris, Herman, 1951.
[3] E. Čech:
Topological Spaces. Prague, 1966.
MR 0211373
[4] J. Dauns K. H. Hofmann:
Representation of Rings by Sections. Mem. Amer. Math. Soc., 83, (1968).
MR 0247487
[5] Z. Frolík: Structure Projective and Structure Inductive Presheaves. Celebrazioni arrchimedee del secolo XX, Simposio di topologia, 1964.
[7] A. N. Gelfand D. A. Rajkov G. E. Silov: Commutative Normed Rings. Moscow, 1960 (Russian).
[8] E. Hille S. Phillipps: Functional Analysis and Semi-Groups. Providence, 1957.
[10] G. Koethe:
Topological Vector Spaces, I. New York Inc, Springer Vlg., 1969.
Zbl 0179.17001
[11] J. Pechanec-Drahoš:
Representation of Presheaves of Semiuniformisable Spaces, and Representation of a Presheaf by the Presheaf of all Continuous Sections in its Covering Space. Czech. Math. Journal, 21 (96), (1971).
MR 0487958
[12] J. Pechanec-Drahoš: Functional Separation of Inductive Limits and Representation of Presheaves by Sections, Part One, Separation Theorems for Inductive Limits of Closured Presheaves. Czech. Math. Journal.
[13] J. Pechanec-Drahoš: Functional Separation of Inductive Limits and Representation of Presheaves by Sections, Part Two, Embedding of Presheaves into Presheaves of Compact Spaces. Czech. Math. Journal 29 (104), (1949).
[14] J. Pechanec-Drahoš: Functional Separation of Inductive Limits And Representation of Presheaves by Sections, Part Three, Some Special Cases of Separation of Inductive Limits of Presheaves. Czech. Math. Journal 30 (105), (1980).