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INTRODUCTION

In this paper some representation theorems for certain presheaves are proven.
They state that in the covering space of the presheaf in question there is a closure such
that the set of all continuous sections over any open set, endowed with the topology
of pointwise convergence, is precisely the set of those that canonically correspond to
the sets of the presheaf, and that the natural maps of the spaces of the presheaf onto
the spaces of the sections are homomorphisms. In the final section we find out when
there is even a topology with the above mentioned properties. That gives us a repre-
sentation theorem in terms of topological spaces.

This is the fourth and last part of the paper “Functional Separation of Inductive
Limits and Representation of Presheaves by Sections”. The basic definitions and
notation were introduced at the beginning of Part One which together with the other
foregoing parts is very often reffered to. If we refer, say, to 3.2.7 or 0.5, we mean
Remark 3.2.7 of the second section of Part Three or Definition 0.5 at the beginning
of Part One, respectively.

4. REPRESENTATION OF PRESHEAVES BY SECTIONS
1. PRELIMINARY LEMMAS

4.1.1. Notation. A. The set of all open nonempty subsets of a topological space X
is denoted by #(X). If xe X, we put Bx = {U e B(X) | x € U}. Throughout this
chapter the inverse inclusion order in #(X) is denoted by < (given U, V open, then
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USViff Ve U). If £ = (X, 1) is a uniform (proximal, ...) space, then ¢] g _
= (X, cl t), where cl t is the closure in X generated by ¢.

B. A presheaf over X from a category & is an inductive family & — {Sleuy| )
.{B(X) <)} from K& over (#(X) <) (see 0.2). We denote it by & = {Suleuy| X).

C. Given an inductive category K (see 0.5) and a presheaf & = {Svlgwl X}
over X from &, x € X, then we put &, = {Sy|ouy| (Bx £)}. As (Bx <5 is right
directed, &, is a presheaf from & in the sense of 0.2. Thus there is 4 = lim &,
and the K-object . is called a stalk over x. By 0.4, for each U € #x there is a canoni-
cal K-morphism &y, : Sy = 4.

D. Let an i.c. category £ with the union property (see 0.19) and a presheaf & =
= {5{0|Qw| X} from 2 be given. For every x € X we have the stalk ., = lim &,
and there is an €-object 2 = J{5, | x € X} (see 0.19), which is called a covering
space of . If U < X is open then the section over Uin Zismap r : U — £ such that
r(x) e £, for all x € U. Recall that 2 is an object from £, thus £ is also from CLOS
or from SEM or from PROX (see 0.10). Regarding £ as an element of that of these
to which 2 belongs, we have 2 = (P, ), where P = ]ﬂ| is a set and ¢ is a closure or
semiuniformity or proximity, respectively (see 0.9) .Thus r is a map of U into the set P.

E. If Ue%(X), ae|Zy| = Xy, we have &y (a) €| £, = I, for all xeU. Setting
a(x) = Eyy(a) for xe U, we get a section @ over U. Putting Ay = {d| ae Xy},
pU(a) = g, we get a set Ay of sections corresponding canonically to Xy. The map
pu : Xy — Ay is onto. It is 1 —1 iff the following condition is fulfilled:

COND. If a, b € Xy so that there is an open cover ¥ of U with gyy(a) = euv(b:
for all Ve, then a = b.

(The proof is straight forward.)

If xeU, de Ay, we put ny,(a) = &y,(a), where @ = py(a). We get a map Nux )
: Ay — I.. Clearly, if py is 1—1, we have y, = &y, o py' : Ay = Iy

F. Given & = {.%’U|Quy| X} from £, where € is one of the categories mentioned
in 0.5, and the covering space 2 = {5, | x € X} of &, it is known that P = |?| =
= U{I. = |#,] | x e X}. If in every I, we have a closure (topology, ...) s, then by s
we denote the closure (topology, ...) inductively defined in P by the canonical embed-
dings j, : (I, s,) = P. Further, if s} is the closure (topology, ...) of ., = lim &,,
then 2 = (P, ss¥) (see 0.19). If u is a closure (topology, ...) in P — for .example, if
£ = UNIF, then u is a uniformity in P —, x € X, then we denote by u, the closure
(topology, ...) in I, projectively defined by the canonical embeddings j, : I, — (P, u).
The following statement holds: The identical map i : (P, su,) - (P, u) is an £ —
morphism (for example, if u is a uniformity, then i is uniformly continuous) and
(sup)y = u,.

Proof. Look at the commutative diagram
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(e u) —d5 o (Py)

I

(l,,(su),) - (Psu,)
Jx

Here i(iy, i ') is continuous iff the same is true for ij2 = ji(j3i, = j2, jli;* = ij3).
But the latter holds by the definition of u,(suy, (su,) and the continuity of i).

If u is a closure (topology, ...) in P, U € #(X), then by by(u) and 7y(u) we denote
the closure (topology, ...) projectively defined in A4, and in X, by the canonical
maps {ny.: Ay = (I u,) | xeU} and {&,: Xy > (I, u,) | x €U}, respectively.
If ¢ is a closure in P and U € #(X), then I'(U, t) is the set of all continuous sections
r:U — (P, 1) (see 4.1.1D).

4.1.2. Notation. Let I = {FU|QUV| X} be from an i.c. category L, let # =
= {(Hy, hy) |rw| X} be a hull of 7 from TOP (see 2.1.2B and 0.11). We put & =
=cl T = {2y = (Xu, 1) |ovv| X} (see 4.1.1A, 0.9). Let 5, = (I,, t¥) = lim &,
R, = (H,, h) = lim #, be the stalks of 2, = U{S, | x e X} = (Py, stY), Py =
= {2, | x € X} = (Pu, sh), respectively, where P, = U{l,, x € X}, Py =
= U{H,|xeX} (see 41.1C,E). Recall that lim 7,€ & while £, #, e CLOS.
Given U e%’(X), x e U, let Ay and Ay be the sets of the sections over U in #, and
in Z 4, that canonically correspond to X, and Hy, respectively. Let py : Xy — Ay,
py : Hy = Ay, &y i Xy — 1, &y Hy — H, be the canonical maps (see 4.1.1C, E).
As # is a hull of & (see 2.1.2B) so there is a 1—1 continuous map e, : £, > £,
for every x € X. If ¢ and h are closures in P, and in P, then by(t) and by(h) denote
the closures projectively defined in 4, and Ay by the maps ny, : A4y = F, and
Nux : Ay = &, respectively (see 1.4.1F). The next commutative diagram shows the
situation.

(Agbolt ) <P (X, 1)~ (Hyhy) —Pvw (4,,b,(h))
(4.1.3) P | l%w Sux o

(It ) == (H,,h)

The maps py, py are onto (see 0.5). Further, py and py are 1—1if 7 and #, respec-
tively, fulfil the condition COND from 4.1.1E; ey are continuous, open and 1—1
maps into (Hy, hy), hence homeomorphisms of (Xy, mty) into (Hy, hy) (mty is the
topological modification of 7, — see 2.1.2B, 0.9), fy, Ny are continuous; e, is 1 —1
for all x e U.

The following lemma will be useful:
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4.1.4. Lemma. A. Let A be a set and for every a € A let us have a commutative
diagram of closure spaces and maps such that v is projectively defined by {g, : Y —»
- (Z, w,) | a € A}. Then f is continuous iff all the h, are.

Xu —L o (v

S s

(Z.,Wa )

B. Let U = X be open. Suppose £y, in the diagram 4.1.3 are continuous for all
x € U. If the closure t, in I, coincides with that projectively defined by e, :I1, —
— (H,, h), then &y, in 4.1.3 are continuous for all x € U. Thus, if for some x € X,
the closure h, is coarser than h} (i.e. &y, in 4.1.3 is continuous for all U € B(X))
and the closure t, is projectively defined by e :I, — (H,, h,), then Ly, from 4.1.3
is continuous for all U € #x.

Proof. A: fis continuous iff so is g,f = h, for all « € A. But h, is continuous for
such a. B: The continuity of &j.ep = ey, yields that of &y,.

4.1.5. Lemma. With the same symbols as in 4.1.2, let us consider the diagram
4.1.3 for Ue B(X), xe U.

A. If a,be Xy, then py(a) = py(b) iff pyey(a) = pyey(b). Thus py is 1-1
if py is (therefore if COND from 4.1.1E holds for #, then py are 1—1).

B. Assume that y,, Eys, €, in 4.1.3 are continuous for all xeU (which, by
4.1.4B, holds if, for all x € U, h, is coarser than h¥ and t, is projectively defined
bye.:I,— (H, hx)). Then the maps py, py in 4.1.3 are continuous.

C. If ey is a homeomorphism into (Hy, hy) (which holds if (Xy, ty) is topo-
logical — see 2.1.2B) together with py, then so is py (recall that ey, maps Xy into Hy
while p;, maps Hy onto Ay). Especially, setting t = stf, h = sh} (see 4.1.1E), we
get from 4.1.3

(A, by (sto) <P (Xy,1y) =4 (Hy, hy) s (A}, by(shi)

QUJ( J gUx l gUx ‘%

(I, ty) — (H,, h)

where all the maps are continuous for all U € #(X), x e U.

Proof. If a, beXy, py(a) = py(b), then &y(a) = &y(b) for all xeU. Thus
Sux ev(a) = e, Euu(a) = e, Ey(b) = Eysey(b) for all xe U, hence pj ey(a) =
= Py ey(b). Conversely, if py ey(a) = py eo(b) then e, & () = & eyfa) =
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= &y ey(b) = e, Eyy(b) for all x € U, so Eyi(a) = Eux(b) for all x € U which shows
that py(a) = py(b).

If h, is coarser than h} and t, is projectively defined by e, : I, — (H,, h,), then
clearly &y, :(Hy, hy) — (H,, hy) and e, : (I, t,) > (H,, h,) are continuous while
ux : (Xu, Tw) = (I, t,) is continuous by 4.1.4B.

The closure by(st,) is projectively defined by {1y, : Ay > (I, t,)| x€ U} (see
4.1.2B), so py is continuous by 4.1.4A. The same argument works for py,.

If py and e, are homeomorphisms, then py' exists. Further, py! is continuous
iff so is ky = pyoeyopy’, for ey is a homeomorphism into (Hy, hy) (see 0.15).
As e, is continuous and by(sh,) is projectively defined by {ny, : 4y — (H,, h,) |
| x € U}, the continuity of ky follows from 4.1.4A. The proof is thereby complete.

4.1.6. Remark. If (Hy, hy) from 4.1.3 is a compact topological space and if
(Ay, by(h)) is a Hausdorff topological space, then py is a homeomorphism if it is
1—1 and continuous. Clearly, (4y, by(h)) is Hausdorff and topological if so is (H,. h,)
for all x e U. It can happen that (H,, h}) from 4.1.5 is not topological or not Haus-
dorff, but that there is a Hausdorff topology h¥ in H_ coarser than h¥. Then we can
projectively define the topology by(sht) in Ay by the maps {ny, : Ay — (H,, hi)|
| x € U}, getting a Hausdorff topological space (Ay, by(sh)). So we get

4.1.7. Corollary. The same symbols as in 4.1.2 are used. For every x € X let h¥
be a Hausdorff topology in H, coarser than h¥ (such an hi exists provided (H,, h})
is f.s. — see 1.1.2). Let t be a closure in P such that for any U € B(X), x € U, the
maps &y, (Xy, 1) > (I t,) and e, : (I, t,) = (H,, h%) are continuous (by 4.1.4B,
this holds provided t = st¥ or t = st*, where ti is projectively defined in I, by
e, : 1, — (H,, hf)). Let us consider the diagram

.
e Py

(A, bft) 4&—(XU,1U) 2 (H,, h) — (Ay, b, (sh¥)
(4.1.8) . l ) l%’ _
qU)\ g e, /’qu

(1, ,t,) —=> (H, ,b)

(here by(t) = by(st,) for (st,), = t, — see 4.1.1F). Every map here is continuous
and (Ay, by(sh)) is topological and Hausdorff. If py is a homeomorphism (which
holds provided (Hy, hy) is compact and # fulfils COND from 4.1.1E — then py
is 1—1) together with ey (which holds provided (Xy, 1y) is topological — recall
that ey maps Xy into Hy), then so is py as well. Especially, py : (Xy, ty) =
— (Ay, by(st})) is a homeomorphism if (Hy, hy) is compact, (Xy, 1y) topological
and COND holds for #.

Proof follows directly from 4.1.5.
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4.1.9. Remark. Let & = {(Xy, 1) |euy| X} be from UNIF (see 0.5), let # =
= {(Hy, hy) |ruv| X} be a compact hull of # so that # < TOP (see 2.1.2B, C, D),
As (Hy, hy) are compact, there is a unique uniformity ny in Hy so that clny = hy
(see 0.9) and #' = {(Hy, ny)|ryy| X} = UNIF. We put (H,, n¥) = lim #},
(I, s¥) = lim &, for all x e X (n} is a uniformity). By 4.1.1E, we can take the semi-
iunformities ss¥. sn} in Py = U{I, | x e X} and P, = U{H,, x e X}, respectively.
Then the uniformities by(ssy), by(snk) can be made as in 4.1.2E. We get

(A, by(ssHBe (x,,1,) —2s(Hy ,ny) P (A, bl(sn]))

® \ [t |5 -

(I,,85) ——=(Hy ,n})

But we cannot get the statements of 4.1.5 or 4.1.7 in terms of UNIF unless ey,
and py are uniform embeddings (see 0.15). For example, if the complete hulls (Hy, ¢y)
of (Xy, ty) are compact (i.e. (Hy, cl ¢y) are compact; ¢y is a uniformity), we can set
ny = ¢y (in this case ey :(X,, ty) > (Hy, ny) are uniform embeddings). If Z, =
= (H,, n}) is f:s. by U(®, — R) then there is a separated uniformity nj in H,.
Replacing n}, by(sn})in (D) by nf, by(snf), we get that py : (Xy, ny) = (Ay, by(snk))
is a uniform embedding if so is py : (Hy, ny) = (4y, by(snk)) (the both maps are
onto).

We have been dealing with the question whether the map py is a homeomorphism.
If this should be true, then py must be 1—1, which holds if so is py. The map py
is 1 —1iff o fulfils COND from 4.1.1E. If this is not the case then we cannot use the
same tools as above. Nevertheless, we still can deal with the question whether the
identity iy : (Xy, ty) = (Xy, to(t)), where 7y(t) is defined in 4.1.1F, is a homeo-
morphism. We do it in the next remark.

4.1.10. Remark. Let a presheaf & = {(Xy, 1y) |ouv| X} from CLOS and its hull
# = {(Hy, hy) |ruy| X} from TOP be given. As usual, let S, = (I, t5) = lim &,,
= (H,, h}) = lim #,, Py = (Py, st¥), Px = (Px» sh}), Ay, Ay be the stalks,
the covering spaces and the sections in the covering spaces of & and 5, respectively.
If #(h) is a closure in P(P,), then we can projectively define the closure 7y(t) (hy(h))
in Ay(Ay) by the maps {&y, : Xy - (I, t,) | x e U} ({€s : Hy > (H,, by) | x € U}) —
see 4.1.1E — as the following commutative diagram shows (iv, iy are identities):

(X7, (£)) 2= (Xy 1) =2 (Hy, hy) o, (Hy, hy(h))

4.1.11 X Sy ;
( ) s!/x lgu l - §U.¥
(I, tx) —2>(Hy by )
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Assume that e,, Eyx Epx are continuous for all x € U (by 4.1.1,B this holds if &j,
is continuous — in particular, if every h, is coarser than h* — and if ¢, is projectively
defined by e, : I, = (H,, h,)). Then clearly iy, i;, are continuous by the definition
of ty(t), hy(h). If ey is a homeomorphism (this holds if (X, 1) is topological — recall
that ey maps Xy into Hy) together with iy, (this holds in particular if (Hy, hy) is
compact and (Hy, hy(h)) Hausdorff), then so is iy. Especially, if for every xe U
there is a HausdorfT topology hf in H, coarser than h} (this holds if (H,, h%) is f.s.)
and if } is projectively defined in I, by e, :I, — (H,, h}), then iy :(Xy, tp) —
— (Xy, ty(st})) is a homeomorphism if (Hy, hy) is compact and (Xy, ty) topological.

Proof. The continuity of iy' can be proved as the continuity of py' in 4.1.5.
If (Xy, ty) is topological then e, is a homeomorphism (see 2.1.2B). If (Hy, hy) is
compact, then iy : (Hy, hy) = (Hy, hy(shf)) is a homeomorphism, from which our
statement easily follows.

4.1.12. Lemma. If iy, in 4.1.11 is continuous or open (i.e., iy(M) is hy(h)-open if M
is hy-open), then py :(Hy, hy) = (Ay, by(h)) is continuous or open, respectively
(we do not assume that py; is 1—1). Thus if iy is a homeomorphism, then (Ay, by(h))
is topological and if py is 1—1 then it is a homeomorphism.

Proof. Openness: Given a € Hy, a finite set F = {xl, ..‘,x,,} < U and some
h,, — nbds N;of &y (a)in H,, i = 1,...,n,then put Ny = N{yziN; | i = 1,...,n}.
Then Ny and My = (\{nyz N;|i=1,....,n} is hy(h) — nbd and by(h) — nbd
of a, respectively, and pyNy = Mp. If g € My then there is a € Hy with py(a) = g.
As nyeg€N, i=1,...,n, we get &y, (a) =Ny, Pola) =nyg€N,, for i=
=1,...,n, 80 pyNp = Mg. Let N be a 7, — open set. Since iy(N) is open, there is
a family & of finite subsets F = U such that iy(N) = U{Ny | F € #}, where N are
the sets described above. Then py(N) = U{pyNr = Mg | F e #}, which is open.

‘To prove the continuity of py, look at the commutative diagram

(Hy,hy) =5 (Hy  ho(h)
Pu Sus
(AL b (h) e (Hy )

Here the continuity of iy implies the continuity of &p,iy = ny,py for all xeU,
S0 py is continuous.

4.1.13. Notation. If the hull o of & does not satisfty COND from 4.1.1E then
the map py : Hy — Ay isnot 1—1. If not even & satisfies COND, then pyisnot 1—1,
either. But we can make the factorspace (Xy/py, i) of (Xu, ty) or (Hy/py, hy) of
(Hy, hy) by the equivalence {a, b € Xy, then a ~ b iff py(a) = py(b)} or {p, q € Hy,
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then p ~ q iff py(p) = py(q)}, endowed with the closure 1}, or hy inductively defined
in Xy/py or Hy[hy by the canonical map k, (X, 1) = Xy[pu or ky : (Hy, hy) -
— Hy|py, respectively. By 4.1.5,if a, b € Xy, then a ~ b iff e,(a) ~ ey(b). Therefore,
there is a 1—1 map ey, : Xy/py — Hy/py such that eyky = kjey. Further, there are
canonical maps qy : Xy/py = Ay, qu : Hy/py — Ay which are 1—1. If moreover t
and h are closures in P, and in P (so that we can make by(t), by(h)) respectively,
we have the following commutative diagram:

(4.1.14) (Xy /Py, Ty) 2 (Hy /Py, b)) '

S T

(A, by(t)) <P (X, 1) 24r (H,, hy) P (AL B (H))

’]Ux l e l n 'Ux

(/J('id() — (H.x/h.x)

Here ey is continuous. Indeed, the continuity of ey, - ky = ky o ey yields that of ey.
A subset M of Hy, is called saturated if {p € HU[ there is g € M such that p ~ g} =
= M.

4.1.15. Proposition. Suppose that there is a closure h in P, such that the identity
iy : (Hy, hy) = (Hy, hy(h)) is open and continuous (this holds if (Hy, hy) is compact
and if there is a Hausdorff topology h' in every stalk H,, coarser than h¥, par-
ticularly, if the stalks (H,, hY) are f.s. — then we can put h = shi — see 4.1.10).
If ey(Xy) is saturated, then ey, is open. Further, the map qy is hy — by(h) continuous.

Proof. Look at 4.1.14, where h is the closure from the assumption. If B =« X v/ Du
is 7y-open then C = k; '(B) is ty-open and ey(C) is open in (ey(Xy), ind hy) — see
0.14. There is an hy-open set D such that ey(C) = D n ey(Xy). Clearly, E = {ge H Ul
there is p € D such that p ~ g} is saturated. Moreover, E 0 ey(Xy) = ey(C). Indeed,
if g € ey(Xy) N E then there is p e D with p ~ g. We have p € ey(Xy), for g is from
the saturated set ey(Xy). There are a, b € Xy with ey(a) = p, ey(b) = g. We have
aeC for pe D. From p ~ q we get by 4.1.6 that a ~ b. Thus ky(b) = ky(a) € B,
so b e C. Therefore q = ey(b) € ey(C).

Now we prove that E is open. If g € E, then there is p € D such that py(p) = py(q).
There is an open h — nbd N of p such that N = D for D is open (recall that (Hy, hy)
is to pological). Let h be the closure mentioned in the assumptions, for which iy :
: (Hy, hy) = (Hy, hy(h)) is open. By 4.1.12, py, : (Hy, hy) - (Ay, by(h)) is open and
continuous. Thus M = py(N) is by(h)-open, L = py ‘(M) is hy-open, g € L, so Lisan
hy-nbd of g and L < E as desired. Further, ey(B) = ky ey(C) = gy ' py ey(C). The first
equality and ky, e,(C) = gy ' py ey(C) is clear. To prove the other inclusion, take a e
€ qy ' Py eo(C). There is b € e,(C) with py(b) = qy(a). If there were ky(b) + a then
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we should have py(b) = gy, ky(b) * gy(a), for gy is 1—1. This contradicts py(b) =
= qy(a), so a e ky ey(C) as desired. Furthermore, py(E N ey(Xy)) = py(E) N pu eu(Xy).
Indeed if a is from theright hand side, then there is u € E and ve ey(X ) with py(u) =
= py(v) = a. As u ~ v and E with ey(Xy) are saturated, we get u € E, u € ey(Xy),
hence a € py(E N ey(Xy)), which proves the inclusion > while < is clear. Finally,
qu : (Hy/pu, hy) = (Ay, by(h)) is continuous for so is gy o ky = py in 4.1.14. (By
4.1.12 py is continuous.) Thus py(E) is by(h) open for py is open. Further, g~ ' py(E)
is hy-open for gy is continuous. Thus ey(B) = gy ' py ey(C) = qu " pu(E N ey(Xy)) =
= qy '(pyE 0 py eu(Xo)) = qu ' puE 0 qy ' py eo(Xy). We have gy ' py ey(Xy) =
= ey ky(Xy) = ey(Xy[py). Indeed, if a is from the left hand side, then there is b € X,
with gy(a) = py ey(b). Since gy is 1—1, we get ey ky(b) = a for quey ky(b) =
= py ey(b) = qy(a). This proves the inclusion = from the left equality, while the
others are clear. Thus ey(B) = qy 'pyE N ey(Xy/py). The porposition is proved.

4.1.16. Corollary. Let (Hy, hy) be compact and ey(Xy) saturated. Suppose that
there is a closure h in Py such that (Ay, by(h)) and (Hy, hy(h)) are Hausdorff and
topological and that py : (Hy, hy) = (Ay, hy(h)) is continuous. (This holds if
there is a Hausdorff topology hi in every H, coarser than h¥, particularly if
(H,, hy) are f.s. — then we can put h = shi). If t is a closure in Py, such that
Cue 1 (Xuy ) » (I 1) and e, : (I, t,) > (H,, h,) are continuous for all xeU
(in particular, if t, = tior if 1 is projectively defined by e, : I, — (H,, h,) for all
x € U) then qy : (Xy/py, mty) = (Ay, m by(t)) is a homeomorphism (see 0.9).

Proof. Look at 4.1.14, where h is the.closure mentioned in the assumptions.
By [1, Chap. 1, sec. 10(6), Cor. 1 of Prop. 8, p. 97], (Hy/py, mhy) is Hausdorff and
hence compact. By 4.1.15, gy, is 1 —1 and continuous, hence an mhy, — by(h) homeo-
morphism. Further, iy, : (Hy, hy) = (Hy, hy(h)) is a homeomorphism, hence by 4.1.15
so is ey : (Xy/py, mty) = (Hy/py, mhy) as well. The continuity of all &y, for all
- x € U gives that of py. From this the continuity of g, follows. As e, and #y, are con-
tinuous for all x € U, we get the continuity of q;* as in 4.1.5. It remains to prove
that &y, and e, are continuous if t, = ¢¥ or if ¢, is projectively defined by e, : I, —
- (H,, h,). But this follows from 4.1.4, which completes the proof.

Suppose that the hull # = {(Hy, hy) |roy| X} of & = {(Xy, w) |ouv| X} is an
& — compact hull (6° — compact hull) of & by a strongly separating family & =
= {Fy = C((Xy, ) = Q) | U e B(X)} (6 = {y = CH(Xyp. 1) > C) | U e B(X)})
(see 2.1.6, 2.2.6; Q is the compact unit interval and C is the field of complex numbers).
If the maps py and pj, are not 1—1, then we can use 4.1.16 if ey(Xy) are saturated.
This means that if ¢ € Hy, a € Xy, ¢ ~ ey(a), then there is b € X, with ey(b) = o.
Here Hy are the sets QFY (the sets ML(«Zy — C) of all continuous multiplicative
linear functionals on «/y) and ryy = opy-

4.1.17. Remark. The saturatedness of eU(X U) is equivalent to the following con-
dition K: “Given ¢ € Hy, a € Xy and an open cover ¥~ of U such that ¢ coincides
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with ey(a) on My = {of,Fy | Ve ¥} (on Ny = {otvsty| Ve ¥'}) — or equi-
valently o5 ¢(fv) = fv ouy(a) for all Ve ¥ and all fy, € Fy, (fy € y) — then there
is b € Xy with @ = ey(b).” Let & fulfil COND from 4.1.1E so that all the py are 1 1.

A. Since ey(a) ~ ¢ = ey(b)implies a = b, we conclude that if ey(Xy) is saturated,
then ¢ ~ ey(a) iff ¢ = ey(a). Thus ey(Xy) is saturated iff ¢ =~ ey(a) implies ¢ =
= ey(a).

B. If s is the & — hull of % then the following are equivalent:

1) pyis1-1,

2) ey(Xy) is saturated,

3) M, = Fy for any open cover ¥ of U.

If # is the & — hull of &, the conditions

4) N, is norm dense in «/y (N, is the smallest subalgebra of 7, such that
Ny = Ny),

5) for any open cover ¥ of U and any a € X, there is a unique extension ¢ of the
restriction ey(a)/Ny of ey(a) e ML(/y — C) to the whole o7y (if this is the case then
¢ = ey(a)) satisfy 4 = 1 = 5 <> 2. Further, each of the conditions 3 and 4 implies
COND; thus 3 = 4 and 4 = 1 even without assuming COND beforehand.

Proof. If ¢, ¥ € Hy then & ~ y means that &y, (@) = Ep(¥) for all x e U. Thus
for every x € U there is an open nbd ¥, < U of x such that opy, o(f,) = ¢(ogv f) =
= ooy W(f) = W(egy.f,) for all x e X and all f, € Fy_. So ¢ = on M, (on Ny),
where ¥ = {V,|xe X}.

Let COND hold for &. If a, b € Xy, ey(a) ~ ey(b) then there is an open cover ¥
of U such that o} ey(a) (f) = f ouv(a) = opv eu(b) (f) = f auy(b) for all Ve
and all fe Fy (fe o). Let Ve ¥". As &(6”) is separating, we get oyy(b) = 0uy(a).
So gyy(a) = euy(b) for all Ve ¥ which, by COND, gives a = b.

Let ey(Xy) be saturated, a € Xy, @ € Hy, ¢ ~ ey(a). Then there is b e Xy with
@ = ey(b), so a = b and ¢ = ey(a). Conversely, if ¢ < ey(a) implies ¢ = ey(a)
then eU(X U) is saturated, which proves A. .

B: Let &# be the & — hull of &. As ¢ ~ ¥ iff py(p) = py(¥) we get 1 = 2.
If ¢ =~  then there is ¥ such that ¢ = ¢ on M. If M, = F, we have ¢ =  which
proves 3 = 1 (here we have not used COND). Let f € F, — M. Take a € Xy and
set ¢(g) = g(a) for all ge Fy — {f} o(f) =c where c = 0if f(a) + Oand c =1
if f(a) = 0. Then ¢ is a map of Fy into Q, hence ¢ € Hy. As ¢ = ey(a) on My, we
have ¢ ~ ey(a). Since ¢ + ey(a), we have ¢ =+ ey(b) for all b € Xy, s0 ey(Xy) is not
saturated which gives 2 = 3. If # is the &% — hull of &, ¢ ~ Y, then there is an
open cover ¥~ of U with ¢ = { on N,. As ¢, Y are continuous maps of &/ into C,
we have ¢ =y if ¢ = y and if Ny is dense in /. This proves 4 = 1 (here we have
not used COND). Given a € Xy, an open cover ¥ of U and an extension ¢ €
e ML(sZy — C) of ey(a) | Ny, then ey(a) ~ ¢. If pj is 1—1, we have ¢ = ey(a),
so 1 =5 1If pe Hy, aeXy, ¢ ~ eyla), then there is ¥~ with ¢ = ey(a) on Ny.
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If the extension of ey(a) from Ny is unique, we have ¢ = ey(a), hence ey(Xy) is
saturated, so 5= 2. Given a€ X, and ¥ such that ey(a)/Ny has an extension
@ e ML(sZy - C), ¢ * ey(a), then ¢ € Hy, ¢ ~ eyla), so ey(Xy) is not saturated
and 2 = 5 follows. The remark is proved.

2. REPRESENTATION THEOREMS

4.2.1. Definition. Let a presheaf & = {Sy|oyy| X}, U € #(X) and an open cover ¥~
of U be given. A family # = {a, €S, | Ve ¥} is called ¥ -smooth if gyy w(ay) =
= owvaw(ay) for all V, We ¥ with Vi W+ 0. & is called projective if for every
U € #(X), any open cover ¥~ of U and any ¥ -smooth family # there is a € Sy
with gyy(a) = ay forall Ve v,

4.2.2. Theorem. Let &' = {%’{,]guyl X} be a presheaf from an i.c. category £
suchthat ¥ = 1 " = {Zy = (Xu, 1) levy| X} is T, (see 2.1.2A), which is endowed
with a strongly separating family & = {F, < C¥(%, - R | 2) l UeB(X)} (see
1.1.5) so that all the gpy send Fy into Fy (see 4.1.5A). Further, let every x € X have
a filter base Ax of open nbds of x such that

(1) <Ax<) is well ordered (see 4.1.1A),
(2) a) the family &, = {Fy | U € Ax} is leftward. smooth;
b) either &, is connected (see 1.1.5A) or x is of a countable local character
and 0§y maps Fy onto Fy for any U, Ve Ax, U £ V;
(3) if U < X is open and if ¥ is an open cover of U then Fy = U{ogvFy | Ve ¥},

If ? = (P, 1) is the covering space of & and Ay the set of the sections in 2 which
corresponds canonically to Xy (see 4.1.1D, E, F), then:

(a) For any x € X the stalk S, = (I, 1) = lim &, of 2 (see 4.1.1C) is f.s. by
C*(F, = R). Thus there is a separated topology t: in I coarser than t7 (see 1.1.2),
The topology, projectively defined by any separating family Dx = C*(#, — R).
may be taken as t*.

(b) For any open U < X the map py :(Xy, mty) = (Ay, by(sti)) is a homeo-
morphism (see 4.1.1E; mty is the topological modification of ty — see 0.9; st* and
by(sti) are closures in P = \J{I, | x € X} and in Ay, respectively — see 4.1.1F).

(c) Let & be projective (see 4.2.1). There is a separated closure t in P such that
by(?) = by(sts) (thus py:(Xy, mt) > (Ay, by(t)) is a homeomorphism), and
I'(U,1) = Ay for any open U (see 4.1.1F).

(d) There is a separated topology ¥ in P with Ay < I'(U,7) and by(f) = by(sts)
for all Ue%(X), so that each canonical map py : (Xy, ty) x U - (P, ) is con-
tinuous (the joint continuity of py is meant — see [9, Ch. 7, p. 233] — we have
pu(a, x) = &yu(a) = (pu(a)) (x) if UeB(X), aeXy, xeU — see 4.1.1C,D).
Further, if the topology t* in every stalk is metrisable and X is metriasble then
so is 1.
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Proof. Let 7 = {6y = (Cy, ty) of¥| X} be the &-hull of & — see 2.1.6. By
214, T, = T 4 is the &, — compact hull of &, by &, = {Fy | U e Ax}. If x has
countable Local character then there is a countable filter base Bx = Ax of nbds of x.
By Th. 2.1.7, (H,, h}) = lim 7 ,isf.s. (weput 7, = 7 ,,) — see4.1.1A, C, and 1.1.1.

By 1.1.2, there is a Hausdorff topology hf in H  coarser than t¥. For each open U
let Ay be the set of the sections in the covering space of J, which corresponds ca-
nonically to Cy, and for x e U let &y, and 7y, be the canonical maps of Cy and Ay
into H,, respectively. As in 4.1.2B, let b{,(shf‘) be the topology projectively defined
in Ay by {ny,: Ay - (H, hi)|xeU} (see 4.1.1F). By 4.1.6, 4.1.9, by(shi) is
Hausdorff, and from the condition (3) and 4.1.17B it follows that py : €y —
— (Ay, by(shf)) is 1—1, hence it is a homeomorphism. By 4.1.5, all the p, are 1 —1.
As 7 is a hull of &, the canonical embeddings ey : (X, mty) > €, are homeo-
morphisms (see 2.1.1B). Now, let #& be the topology projectively defined in I, by
e :I,— (H, hf) — see 4.1.7. Then the maps &y, : Xy — I, are ty — 3 continuous,
so they are also mt, — ti continuous. By 4.1.7, the map py : (Xy, mry) >
— (Ay, by(st})) is a homeomorphism. The statements (a), (b) are proved.

If UeB(X), xeU, aeXy, a =& (a), we set graph (a; U) = {&y,(a)| y e U}.
If e P, ael, we set H(a) = {graph (a; U)UN |UeB(X), aeX, with xeU,
Euda) = a; N is a ti-nbd of af, K(x) = {U{I, | yeU, y+x} UN [ U e 4(X),
a e Xy with x e U, &y(a) = o; N is a ti-nbd of «}. Then H(a), K(«) are filter bases
round o in P. They make a separated closures #, ¥ in P. If t = %, 7 then clearly t, = ¢!
(. is the closure induced in I, by t) for all x € X (so by(t) = by(st}), and A, <
< I'(U, 1) for all U € Z(X). By [11, Chap. 2, Sec. 4, Prop. 2.4.3, p. 608], I'(U, 1) = Ay
which proves (c). Clearly  is a topology and (d) holds (compare also with [11, Chap.
2, Sec. 3, Prop. 2.3.4, p. 607]).

Let every t* be metrisable by a metric d, and let X be metrisable by D’. Given
a,BeP, ael,, Bel, we set D(a, f) = D'(x,y) if x + y, D(x, B) = d,(o, p) if
x = y. Clearly D is a metric in P which makes 7. The theorem is proved.

4.2.3. Theorem. Let &' = {Et‘"{,]guy| X} be a presheaf from an i.c. category £
such that & = cl &' = {Zylouy| X} is T, (see 2.1.2A). Suppose that for each
open U = X we have a Banach algebra sty = C*(%y — C)| £} (see 0.11, 2.1.2)
with the sup-norm which separates points from closed sets of ¥y, so that gpy
maps oy into oy if V.< U. Let every x € X have a filter base Ax of open nbds
such that {Ax< ) is well ordered (see 4.1.1A) and

(1) @) @Gu+1u+s is norm-dense in oty if Ue Ax (U + 1 is the follower of U
in {(AX<));

b) either x is of countable Local character and of(s4y) is norm-dense in sty
for all U, Ve Ax, U £V, or the family &, = {ofy | U e Ax} is connected (see
1.1.5) and oy is symmetric (see 2.2.2B) for all U e Ax;

(2) if U = X is open and if ¥" is an open cover of U then the smallest algebra
in &y containing U{Q:;V.My[ Ve 'V} is norm dense in y.
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Then the statements (a)—(d) of Th. 4.2.2 hold,

Proof. Put & = {y | UeB(X)} and let 7 = {6y = (T v, ty) [szl X} be the
&% — hull of & by & — see 2.2.5B, 2.2.6. If x € X then by Th. 2.2.7 (or by 2.2.8 if x
is of countable local character), (H,, h¥) = lim 7, is f:s. (here T, = T 4), so by
1.1.2 there is a Hausdorff topology hf in H, coarser than h¥. By 4.1.6, by(shf) is
Hausdorff (see 4.1.2B). From the condition (2) and 4.1.17B it follows that py, : €y —
— (Ay, by(sh})) is 1—1 so it is a homeomorphism (see 4.1.1E, 4.1.2). The rest of the
proof is the same as in Th. 4.2.2.

4.2.4. Corollary. Given a presheaf & = {Zy|oyy| X} from UNIF such that all
the %y are separated (see 0.5, 0.17), suppose that every x € X has a filter base Ax
of open nbds such that (Ax<) is well ordered (see 4.1.1A) and

(1) a) @uu+1 is a uniform embedding of 'y into Xy, for all U € Ax (see 0.15);

b) if & = {Fy = U¥(Zy »> R) | U e B(X)} — see 0.14, then either the family &,
is connected or gyy is a uniform embedding of X'y into Xy, for allU, Ve Ax, U £ V
and x is of countable local character;

(2) if U = X is open and ¥ is an open cover of U then U{ejyvFy | Ve ¥’} = Fy
(this holds if oyy : Zy — X'y are uniform embeddings for all V.< U — see 1.3.4b).

Then the statements (a)—(d) of Th. 4.2.2 hold.

The conditions (1b) and (2) may be replaced by the following ones:

(I6) If & = {y = UX(%y > C) | U e B(X)} (see 0.14; C is the field of complex
numbers), then either &, = {sfy | U € Ax} is connected, or @uy is a uniform embed-
ding of Xy into Xy for allU, Ve A,, U < V, and x is of countable local character.

(2') The smallest algebra in sy containing U{Qﬁv,oly[ Ve ¥} is norm-dense
in oy for every open U < X and any open cover ¥ of U.

((1b) is equivalent to (1b") for oy = {f + ig | f, g € Fy} for all U; notice that
(2) yields (2') but (2) does not follow from (2').)

Proof. By 1.3.4B, 1.3.7B, the conditions of Th. 4.2.2 are fulfilled for & and &.
If (1b’) and (2’) hold then by the same argument Th. 4.2.3 works.

4.2.5. Corollary. Let & = {%’ulgw[ X} be a normal and T, presheaf from TOP
(see 2.1.2A, 0.5). Suppose that every x € X has a filter base Ax of open nbds such
that {Ax<) is well ordered and

(1) a) Quy+1 is a homeomorphism of Xy into Xy, and Quu+(Zy) is closed
in Zys+q for all U € Ax;

b) if we put & = {Fy = CX(Zy — R) | U e B(X)} then either &, = {Fy | U € Ax}
is fully connected, or (1a) is fulfilled for any pair U, Ve Ax, U < V, instead of for
U, U + 1 only and x is of countable local character;

(2) Fy = U{civFv | Ve "} for every UeB(X) and any open cover ¥ of U.
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This holds if oyy : Xy — Ly is a homeomorphism into Xy for all Ve U — see
1.3.4a.) Then the statement of Th. 4.2.2 holds.

The conditions (1b) and (2) may be replaced by the following ones:

(Ib) If 6 = {ay = CH&y > C)|UeB(X)} then either &, = {sfy|U e Ax}
is connected or (1a) is fulfilled for any pair U, Ve Ax, U £V, instead of for U, U +
+ 1 only. ((1b) is equivalent to (1b'), C is the field of complex numbers.)

(2') The smallest algebra in oy containing U{Q?‘WMV] Ve¥'} is norm-dense
in sy for every U € B(X) and any open cover ¥ of U.

Proof. By 1.3.1A, 1.3.7A, the conditions of Th. 4.2.2 are fulfilled for & and &.
If we have (1b'), (2') then by the same argument 4.2.3 works.

4.2.6. Corollary. Let & = {Zy = (Xy, 1) |QUV| X} be a locally compact presheaf
from TOP. Suppose that every x € X has a filter base Ax of open nbds such that
{AxZ) is well ordered and

(1) a) if U, Ve Ax, U £ V, then guy is a homeomorphism into % such that the
filter base By, = {ouy(Xy — K)| K = Xy compact} either has no cluster point
or has a limit point in Zy;

b) if § = {y = £F = {fe C(Zy - C) | fhas a limit at infinity} | U € B(X)} —
(see 2.3.1), then either &, = {fy | U € Ax} is connected, or x is of countable Local
character;

(2) the algebra generated in sy by U{Q;“,V.sz{,,l Ve¥'} is norm-dense in &y
in the usual sup-norm for all open U and any open cover ¥ of U.

Then the statement of Th. 4.2.2 holds.

Proof. By 2.3.2, 2.3.5A, B, the conditions of Th. 4.2.3 hold for &, &.

4.2.7. Corollary. Let & = {Zy = (Xy, 1) |ouy| X} be a compact presheaf from
CLOS which fulfils COND from 4.1.1D. Suppose that each x € X has a filter
base Ax of open nbds so that {Ax <) is well ordered and

(1) @) eus1u+2 is 1—1 on gyy+1(Xy) for all U e Ax (U + 1 is the follower of U
in (Ax<));

b) either x is of countable Local character, or the family &, = {Fy = C(Zy —
- R) [ U € Ax} fulfils the following condition: “Given U € Ax such that the prede-
cessor U — 1 of U in {(Ax<) does not exist, Ve Ax, V< U, and a thread
{fweFy | We Ax, V < W < U} through &, then there is f € Fy ., with gy f =
= fw for all We Ax, V < W < U. (This always holds for countable Ax.)

Then the statement of Th. 4.2.2 holds.

Proof. By 3.1.3, (I, #}) = lim %, is f.s. Thus if 7} is a Hausdorff topology
in I, coarser than f}, U e #(X), then it easily follows from 4.1.5 that py : 2y —
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— (Ay, by(st})) is continuous, hence it is a homeomorphism, which proves that
the statements (a), (b) of 4.2.2 hold for #. The rest can be proved as in 4.2.2.

4.2.8. Theorem. Let &' = {Et”b]euy| X} be a presheaf from an i.c. category 2
such that & =cl 9" = {Zy = (Xy. w) |ewy| X} is Ty, which is endowed with
a strongly separating family & = {Fy = Cy = C¥(%y — C ‘ Q) | U e B(X)} such
that all oy send Fy into Fy. Let every x € X have a filter base Ax of open nbds
so that (Ax <) is well ordered (see 4.1.1A) and

(1) @) @Gu+1Fu+, is norm-dense in Fy if Ue Ax (U + 1 is the follower of U
in (Ax<));

b) either (i): x is of countable local character and opy(Fy) is norm-dense in Fy
forallU,VeAx, U £V,

or (ii): the family &, = {Fy|U e Ax} is connected (see 1.1.5) and for every
U € Ax, Fy is either a symmetric Banach algebra or an algebra of real functions
over the field of real numbers, complete in the sup-norm;

(2) if U = X is open and if ¥ is an open cover of U then My = {0y Fy l Vev}
is norm-dense in Fy. Then the statements (a)—(d) of Th. 4.2.2 hold.

Proof. Let us denote by 7, the symmetric algebraic hull of Fy and set & =
= {y|U = X open}. Let T = {(Fy. ty) | ety| X} be the #*-hull of & by & — see
2.2.5B,2.2.6. By 2.2.5A, oyy(#y) is norm-dense in &/, whenever so is opy(Fy) in Fy.
Thus if x € X then (H,, h}) = lim 7 4, is f.s. by Th. 2.2.8 if the case (i) occurs,
and by Th. 2.2.7 if (i) occurs. Putting S = T'= X, F = Fy, G = U{etw(Fy) | Ve
€ ¥}, h = identity in 2.2.5A we get that the symmetric algebraic hull &(G) is norm-
dense in . Thus also the smallest algebra Z generated by G is dense in &7y as «(G)
is the norm-closure of Z. But G = Ny = U{efy(#y)| Ve ¥}, so the smallest
algebra generated by N, is dense in &/, which yields that py : Fy — Ay is 1—1
~ (see 4.1.1E, 4.1.2). Henceforward the proof proceeds as that of Th. 4.2.3 and of
Th. 4.2.2.

4.2.9. Corollary. Let & = {(Xy, ty) [ovv| X} be a presheaf from CLOS such that
there is a metric dy in every Xy which generates ty, and that all oyy : (Xy, 1y) —
— (Xy, 1) are homeomorphisms into (X, ty). Assume that every x € X has count-
able local character. Let (P, sty) be the CLOS-covering space of & — see 4.1.1D
and let & satisfy COND from 4.1.1E. Then there is a metric v in P such that for
the topology t generated in P by v we have

a) the map py:(Xy, ty) > (A, by(t)) is a homeomorphism for every U (see
4.1.1E);

b) the statements (c), (d) of Th. 4.2.2 hold, if we write t instead of st;.

Proof. We have 4, = lim &, for all x e X (here &, = &, and J, is the stalk
of ? = (P, st¥) — see 4.1.1D). As Ax is countable, the metric D, in every I, = |.£,|
can be defined by 3.4.1.

525



If a, b € P then there are x, y e X with ael,, bel, We set v(a b)=1ifx +y
and v(a, b) = D,(a, b)if x = y. Clearly v is a metric in P.

Let U = X be open. By 3.4.1B, we may assume that U is the smallest element
of (Ax<) for all xeU. As & fulfils COND, (see 4.1.1.E) py' exists. The con-
tinuity of &y, :(Xy, dy) = (I, D;) or of Eom : (Eun(X ), D,) — (Xy, dy) for all
x € U yields that of py : (Xy, dy) = (Ay, by(t)) (see 4.1.4A) or of py* : (Ay, by(t)) =
— (Xy, dy), respectively (we have py' = &g} ony, for all x e U, where ny, :
: (Ay, by(t)) = (I, D,), with continuous &', 7y, and ny(Ay) = Ey(Xy)), which
proves (a), while (b) can be proved as in 4.2.2.

3. TOPOLOGISATION

In Theorems 4.2.1—4.2.6 we proved the existence of such a closure ? in P that the
maps py : ¢l Zy — (Ay, by(1)) are homeomorphisms and the sets I'(U, 7) of all con-
tinuous sections over U in (P, ) are precisely the sets A, for all U € #(X). In this
section we seek conditions for the existence of a topology in P with the mentioned
properties.

4.3.1. Definition. A subset M of a closure space X is called a zero set if there is an
feC(X - R) such that M = f~'(0). We say that X has the zero property (ZP) if
each x € X is a zero set. If x € X is a zero set, fe C(X — R) with f(x) =0, f> 0
on X — {x}, then fis called the x — function on X.

Clearly, we get the same if we replace C(X — R) by C(X — Q) in the definition
(Q being the compact unit interval).

Aninductive family & = {X,,Iga,,l {AZ)} from CLOS is said to have ZP if every X,
has ZP.

A presheaf & = {Sulqul X} from a category K is said to have the unique Con-
tinuation property (UCP) if X is locally connected and the maps Quy are 1-1
for every connected U and any V < U.

4.3.2. Lemma. A. A necessary condition for a closure space (X, t) to have ZP
is that every x € X has a countable set Sx of t-nbds of x with \{N | N € Sx} = {x}.
This condition is also sufficient if (X, t) is topological and completely regular.

B. ZP is hereditary.

Proof. If (X, t) has ZP, a € X, then there is an a — function f on X. If N, =
={xeX |f(x) < 27%, Sa = {N, | k =1,2,...,}, then Sa has the desired proper-
ties. If (X, t) is topological and completely regular, aeX, Sa = {NI,NZ, },
then for every j = 1,2, ... there is f; € C((X, t) > Q) with f; 2 0, f;(a) = C, f; = 1

on X — N; as we may assume that N; are open. Then f = Z 277f; is the desired
a— functlon which proves A; B is clear.
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4.3.3. Lemma. Let (X, t) be normal and have ZP.

A. Given a nonnegative continuous function g on (X, t), a closed set Y = X and
aeY such that Yo {xeX | g(x) = 0} = {a}, then there is an a — function f
onXwithf =g, f=gonY.

B. Let a nonnegative continuous function g on (X, t), aeX,e>0,0=20 be
given. Let (X, t) be Ty. Then there is an a — function f on X such that f 2 max (g, 6)
on M(g,¢) = {xeX| |g9(x) — g(a)| = ¢}

C. Given a closed set Y = X, ae Y and an a — function g on Y, then there is an
a — function f on X with f = g on Y. Moreover, if h is a nonnegative continuous
function on X and g = max (h, 8) on {x e Y| |h(x) — h(a)| = &} then there is an
a — function f' on X such that f' =g on Y and f' = max (h,8) on M =
= {x e X| |h(x) — h(a)| = &}.

Proof. A. By 4.3.2B, there is an a — function f; on N = {xeX | g(x) = 0},
so there is a nonnegative continuous function f, on X with f, = f; on N, f, =0
on Y. Then f = g + f, is the desired function.

B. Let (X, t) be T;. AsM = M(g, ¢) is closed, max (g, 6) continuous on it and
a ¢ M, there is a nonnegative continuous function f; on X with f,(a) = 0, f, =
= max (g, 6) on M since Y = M u {a} is closed. If N = {x € X | f,(x) = 0}, then
Y n N = {a}. Applying A to Y and f, we get the function we desired.

C. There is a continuous nonnegative extension f; of g to the whole X. Applying 4
to f; and Y we get the function f we wanted. If h is the function mentioned in C, we
can put f] = max (f, h,d) on M. As f{ = g on M N Y, there is a continuous non-
negative function f, on X withf;, = ffon M and f, = gonY. Applymg AtoMuY
and f, we get the desired function

4.3.4. Definition. Let a presheal & = {2y = (Xy, 1) |QUVI X} from CLOS and
its covering space 2 = (P, sty) with the stalks 4, = (I, tx) over x€X be given.

A. Ifx,yeX, ael,, Bel, then o and B are said to be relative (o« ~ B) if there is
a connected U e B(X) with x, ye U and a € Xy so that &y (a) = o, &y (a) = B
(The relation =~ is not necessarily an equivalence. Clearly, if x = y and  ~ § then
a=p)

B. If M = X, we put Py = U{I,|xeM}. If f is a function on Py, N = M,
x €M, wesetfy = f|Py, fr = fixy- An M — function with respect to the relation = is
defined to be a nonnegative function f on P,, such that

1) f, is continuous on every stalk #, with x € M,

2) if y, 5 € Py, y = 5, then f(y) = f() (it means the function ¢(x) = fo &y.(a)
is constant on M n U for every connected U € #(X) and any a eXU).

If o € Py, then an M — function f with respect to ~ is called the M — function
for o with respect to ~, if f, is a y — function in £, (see 4.3.1) whenever x € M,
yel,y=~a

527



If there is no danger of misunderstanding we write only M — function, M — func-
tion for «, leaving out the words “with respect to the relation ~”,

C. & is said to be connectedly projective if the following proposition holds:
“Given a connected U € #(X), an open cover ¥” of U and a ¥~ — smooth family
{ay e Xy | Ve ¥} (see 4.2.1), then there is a € Xy with ggy(a) = ay for all Ve 7.

4.3.5. Remark. A. If f, g are M-functions for «, then so are max (f, g), min (f, g).

B. The relation =~ is an equivalence in P if & is connectedly projective and either
all £yy are 1—1 or the topology in X is made by an order and gyy are 1—1 for
connected U.

C. If all the gy are 1 —1 then & is not projective (see 4.2.1).

D. If & fulfils COND from 4.1.1E and =~ is an equivalence then ¢y are 1—1 for
all connected U € #(X).

Proof. B.If a > B ~ 9, ael,, Bel, yel,, then there are connected U, Ve %B(X)
provided xeU, yeUnV, zeV and ae Xy, beX, with &y (a) =« &yla) =
=&yy(b) = B, &(b) = 7. Setting U n V=W, a’ = ouw(a), b" = eyw(b), we have
Ewy(@’) = B = &y, (). If all the gyy are 1—1 we get a’ = b'. If the topology in X
is made by an order then W is connected, so again a’ = b’. As Z = U u Vs con-
nected and & is connectedly projective, there is ¢ € X with ¢zu(c) = a, ¢z(c) = b.
Since £,(c) = a, &,(c) = y we have a =~ y.

C. If & is projective, U, Ve#B(X), UnV =0, aeXy, b,ceXy, b*c, Z=
= U U V, then there are d, e € X with 0,,(d) = b, 0zy(e) = ¢, 0z0(d) = 0z0(e) = a.
As b # ¢, we have d + e, so gzyisnot 1—1.

D. If Ue%(X) is connected, ¥ = U open, a, be Xy, guv(a) = opy(b), xeU,
yeV, a=¢ya), B=Eyb), v = Epyla) = &y (b) then o ~ y =~ B, hence o = f,
as a ~ B (see 4.3.4A). Thus &y.(a) = &y(b) for all x e U. By COND, a = b which
proves D. A is clear.

4.3.6. Lemma. Let & = {%y = (Xy, w)|ouy| X} be a presheaf from CLOS
with UCP (see 4.3.1), which is endowed with a family & = {Fy = C(%3— R)|Ue
€ B(X)} such that & fulfils the conditions PL—P3 aqd & the conditions F1—F3
below:

P1: Every x € X has a well ordered filter base (Ax<) of its open nbds.

P2: If # = (P, st}) is the covering space of & then the relation ~ is an equi-
valence in P.

P3: Given a component M of X, x, y € M and We Ax, W = M, then for B(W, y) =
= {Ue#B(X)| U connected, W= U, y e U} we have &y, = lim {Z |euv| <B(W; »),
<>} (notice that B(W, y) is not always right directed: the inductive limit is meant
in the sense of 0.12).

Fl: If xeX, Ve A,, ac Xy then there is We Ax with W < V such that there
is a oyw(a) — function f € Fy (see 4.3.1; this holds namely if &, has ZP and
Fy > CX%y > R) for any x € X and any Ve Ax).
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F2: Given xeX, Ve Ax, a€ Xy, and an a — function feFy, then there is
a oyy+1(a) — function g € Fyyy with ¢py+1g =f (V+ 1 is the follower of V in
(AXZ); this holds namely if & 4 is normal, has ZP, F, > C¥ %y - R) and
ovv+1Xy is 1y 41 — closed for every x € X and any Ve Ax — see 4.3.3C).

F3: Either x is of countable local character or the following holds: Given U € Ax
such that the predecessor U — 1 of U in {Ax <) does not exist, We Ax withU < W,
a€Xy and a thread F = {fy l Ve Ax, U = V < W} through & such that every fy
is a owy(a) — function on Xy, then there is a gwy(a) — function f on Xy with
ovuf = fyforallVe Ax withU c V < W.

F4: If x e X, Ve Ax, U € B(X) connected with V < U, then opy sends Fy into Fy.

F5: Let M be a component of X, x,ye M, We Ax. If F = {f, | Ve B(W, y)}
is a thread through & (see P2) ihen lim & € Fy,. (F4, F5 hold if F, = C*(%y — R)
or Fy = C(Zy — Q) for all Ve B(X).)

Let M be a component of X, xe M, a €1,. Then

A: There is an M — function f for o such that {f, &y, | Ue Az} is a thread
through &, for all z € M. Further, given an o — function g on I, such that
{g- ny,x| Ve Ax} is a thread through & 4, then there is a unique M — function f
for a with f, = g. Furthermore, given ¢ > 0,6 2 0, ye M, pel, and an M — func-
tion g’ with f = max(g’,8) on {yel,||g'(y) — g'(B)| = &}, then f = max(g’, 9)
on{yePy|lg'() - g'(B) 2 ¢

B: Let S(«) be the set of all the M — functions for a such that {f - &y . | U € Ax}
is a thread through & 4. If for every Ve Ax the set Fy is closed under maximum
and minimum of two functions from Fy, then so is S(a).

C: If ye M then there is a unique f = hx,(ot)ely with o ~ . The map h,, :
1 S, > S, is a homeomorphism. This statement follows only form P2, P3.

Proof. Let U € Ax be such that there is a € Xy with &y (a) = a. By F1, we can
assume that there is an a — function fy € Fy. As P1, F1—F3 hold, a thread & =
= {fy | Ve Ax, V < U} through & ,, can be made by induction similarly as in 1.1.7,
so that every fy € # be a gyy(a) — function on X,. Then g = lim & is an « —
function on I, and {g o &y, ] Ve Ax} is a thread through & 4.

Now, let g be any a — function on I, such that {g, = g - &, , | V€ Ax} is a thread
through & 4. By the maximality principle, there is a maximalset N ¢ M andan N —
function h for o with h, = g (see 4.3.4B) such that {h} = h,0¢&, .| Ve Az} is
a thread through &, forevery ze N.If ye M — N, Vye Ay with Vy < M, a € Xy,,
z € N, then by P3, there is a connected U e.QZ(X) with Vy c U, ze U and be Xy
so that @yy,(b) = a (such aVy exists, for the components of X are open since X is
locally connected as & has UCP — see 4.3.1). Further, there is Vz € Az with Vz < U.
We can put

(E) F5(a) = hy(b) = hz o o o(b)
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which defines the function fZ*(h%) on 0yy,(Xy) (Xy). As ki = ghy,hy, and ki, e
€ Fy,, we have ki e Fy, by F4. We shall prove thac f;;** does not depend on U, z, b.
If U’ e #(X) is connected, v e N and ¢ € Xy, with gy.y,(c) = a, then for y = &, .(b),
5 =&y fe), n =&y, (b) = &y (c) we have y ~n ~ 6. By P2, y ~ 6, so h(y) =
= h,(3). Thus by (E), f,"%(a) = h,(8) = h,(y) = fy;>"(a) as desired.

Thus we can define a function fy, on Xy, in this way: If a € X, then we can take
an arbitrary z € N. By P3, there is a connected U € #(X) with ze U, Vye U and
be Xy with gyy,(b) = a. Then we can put fy,(a) = fy;"%(a) = hi(b). We have
just shown that this choice does not depend on U, b and z.

Now we shall show that #(Vy,z) = {hj | U e B(Vy, z)} is a thread through
Epwy.z By (E), if U, U € B(Vy, z), U < U’ then gpvhty = hjjooyy = h, o &y ;o
o Quy = h, o &y, = hY. as desired.

Now we show that fy, € Fy,. By (E), fy, o ouy, = hy € Fy for all Ue B(Vy, z)
(notice that we have a = guy,(b) in (E)), which together with P3 gives fy, =
= lim #(Vy, z). As F(Vy, z) is a thread through &gy, .ys We get fy, € Fy, by F5.

Now we show that Fy = {fyl Ve Ay} is a thread through 4y If V, We Ay,
W < V, U open and connected with V < U, a€ Xy, be Xy, oyy(b) = a, then by
(E), fV(a) = hf/(b) =fW(QVW(a)) = Qtwfw(a)a 0 oywfw = fy as desired. If f' =
=lim Fy, f =g on N,f =f" on I,, then f is an N u {y} — function for «, so
M = N.

In order to prove that f is unique we need to prove the statement C. By P3, there is
a connected U = M with x, y € U and a € X, with &y (a) = o Then § = &y (a) ~
~o Ifyel, y~athen y~oa~p, soyx~f, hence y = f. We set h,(a) = B.
Since h,,(«) is unique and the relation ~ is symmetric, we get hy, o h,, = identity.
Inter changing x and y we get h,, o h,, = identity, so h,, is a 1—1 map onto I,.
Further, h,,: £, — £, is continuous iff so is hy = hy, o &y, = &y > S, for all
Ve Ax. If Ve Ax, then by P3, h, is continuous iff so is gy = hy o 0y : Xy = £,
for allU € B(V, y). But gy = &y, and it is continuous, so C follows.

Now the uniqueness of f follows from the following statement: “If g, h are two
M — functions such that there is z € M withg = honI,, theng = hon P,,. “Indeed,
if ye M, a €1, then by C, there is f €I, with & ~ B, so g(a) = g(B) = h(B) = h(x)
as desired. .

The last statement we need is S: “Given M — functions f, g,f1,9; and ze M
such that f, 2 g, on {yel, | f(y) Z g(7)}, then f; = g, on {y € Py | f() = ()}
Indeed, if y € Py, with f(y) = g(y) then by C, there is fel, with y ~ B. As f(B) =
= f(v) = g(v) = 9(B), we have f1(B) = 9:(B), so f1(v) = g,(v) as desired. Now the
last statement of (A) follows from the fact that |g" — g'(B)|, & f, max (g, §) are
M — functions, and from S.

We prove B. If f, g € S(«), h = max (f, g), then by 4.3.5A, h is an M — function
for o. If Ve Ax then hy = ho &y, =max(foé&y ., go&y,)€Fy, so {h, | Ve Ax}
is a thread through &,,. By A, there is a unique h’ € S(a) with b’ = h on I,, so
h" = h which completes the proof.
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4.3.7. Remark. A. In 4.3.6 we assume that & has UCP. It means that X is locally
connected and that gy, are 1 —1 for connected U. But in the proof we never used the
fact that these gy, are 1 —1 or that M are components. Thus it can be easily seen that
the conditions of 4.3.6 can be wegkened. Instead of UCP we can only assume that
every x € X has a connected open nbd K so that the conditions P1—P3, F1 —F5 of
4.3.7 hold for K instead of M, and in the statement as well as in the proof replace M
by K.

Another weak point of the foregoing lemma is the condition P2 which is very often
not fulfilled (see 4.3.5). Nevertheless, in this point we can take the lemma as a method
for formulating many other similar ones for we can take another relation =~ (for
instance “o ~ B iff there is a relatively compact U € #(X) and a € Xy with o« =
= &y (a), B = &y (a)”, which is an equivalence if & is projective and if oy, are 1—1
for relatively compact U) and adopt the conditions, the statement and the proof
to it. In this way we can get many similar lemmas. This method can be expressed in
a one piece which we do in part C of the remark. Instead of UCP the following
notion will be useful there: “Given a nonempty set 2(X) = #(X), a€l,, pel,
then o and B are 2(X) — relative if there is U € 2(X) and a € X, with &y (a) = a,
Eup(a) = B

Instead of P2 we may assume that the 2(X) — relation is an equivalence in P.
Likewise as in 4.3.4 we can define the M — functions for o and the M — functions
with respect to the 2(X) — relation.

B. A question arises when the 2(X) — relation is an equivalence. To answer it,
the following property can be useful, which can be called the “@(X) — projectivity”
and which is formulated as follows: “Given U € 2(X), an open cover ¥~ of U and
a ¥ — smooth family {a, eXV| Ve ¥’} then there is a € Xy with gyy(a) = ay
for all Ve ¥7”. Likewise as in 4.3.5 we can prove this statement: Let & be 2(X) —
projective. Then the 2(X) — relation is an equivalence if either gy are 1—1 for all
the Ue 2(X) and V, We 2(X), VA W=+ 0 implies VU W, Vn We 2(X), or if
all the gyy are 1—1 and either & is projective or VU We 9(X) if V, We 2(X),
Vo W£0.

C. The generalization of 4.3.6 proceeds like this: Let the family & and the bases Ax
from 4.3.6 fulfil the conditions P1, F1—F3 and P2': There is an open cover 4~
of X such that for every K € & there is a nonempty set 2(K) = %(K) so that the
P(K) — relation (see 4.3.7A) in Py is an equivalence,

P3": Given y,zeK, We Ay, W < K, then

Xy = lim {Zy|ovy| (Bx(W, z) = {Ue 2(K) | W = U = K, zeU} )},

F4': IfKe A, xeK, Ve Ax, U € 9(K) with V < U, then gy sends Fy into Fy,

F5': Given y,ze K, We Ay then lim & € Fy, for any thread & through &p, .y
Given Ke A", xeK, ael,, then there is a unique K — function f* for o with

respect 10 the 9(K) — relation (see 4.3.4) such that {f* o &y, | U € Az} is a thread

through &, for all z € K, and that the statements 4.3.6A, B, C hold if we replace the

531



word “M — function” by “K — function” and the equivalence =~ by.the Q(K) -
equivalence in Pg.

The proof of 4.3.7C follows directly from that of 4.3.6.

The purpose of the foregoing remark is to extend every « — function g on J,
to a K — function for a, where K is an open nbd of x (which may depend on a, g).

If we have Fy = C*(%y - R) or Fy = C(Zy — Q) for all Ue%(X), x,yeK
then the homeomorphism h,, carries every o« — function on ., onto an hyy(o) —
function on £ ; thus g can be extended to a K — function with the help of those h,,,
so that we need not use the conditions F4 F5 (F4', F5') from 4.3.6 (4.3.7C). If Fy
are defined in this way, we can assume directly that 4, and .#, are homeomorphic
under a homeomorphism h,, so that h, = h, oh,, h,oh, = identity for all
x, y, ze K. Clearly, a sufficient condition for this is “Zy = lim {%"U[gw| {Ue
eB(X)|yeU} =)} for all sufficiently small We Ax and any yeK”. By 1.4.5,
this is fulfilled if P3 or P3’ from 4.3.6 or from 4.3.7, respectively, holds.

4.3.8. Proposition. Let & = {%, = (Xy, 1) |euv| X} be a presheaf from CLOS
which fulfils COND from 4.1.1E. Suppose that the following conditions hold:

1) For every x € X and any o €l, there is a nonempty set S(a) whose elements
are pairs (V, f), where V is an open nbd of x and f is a function on Py (see 4.3.4B),
which satisfies a)—d):

a) If (V, f) € S(a) then for any open nbd W < V of x we have (W, f|W) € S(a).

b) If (V,f), (W, g) € S(x) then there is an open nbd Z =« V. W of x with

(z, max (f, 9)), (Z, min (f, g)) € S(«).

c) Given (V,g)eS(x), yeV, Bel, ¢> 0, 5 = 0, then there is (W, f) € S(B) with
W < V such that f z max (g, 8) on {y e Py | |9(y) — g(B)| = ¢}.

d) If (K, f) € S(«) then f, is an o — function on J and for every y, z € K there is
a homeomorphism h,, of J, onto S, with h,, o h,, = identity such that for
Bel,, yel, we have f(B) = f(v) if y = h,,(B), and that for a € Xk there is an

open nbd V <= K of x such that y,zeV, B = & (a), y = &g (a) implies y =

= hy,(B) (clearly, this holds if there is an open cover 9(K) of K such that the

P(K) — relation (see 4.3.4, 43.7A) is an equivalence in Pg and that P3' from

4.3.7C holds).

2) There is an open cover ¥~ of X such that every Ve ¥ has ZP (see 4.3.1).
3) In every stalk I, = P there is a closure t; with the following properties:

a) All the canonical maps py : Zy — (Ay, by(stt)) are homeomorphisms.
b) Given ael, and a ti — nbd L of x, then there is (V, g) € S(«) and & > 0 such
that M, = {yel,|g(y) <&} = L.

Then there is a Hausdorff topology t in P such that all the canonical maps
pu: &y — (Ay, by(t)) are homeomorphisms and Ay < I'(U, t) (see 4.1.1F) for all
U e 3(X). :
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If every Ve ¥ is a normal topological space, X has countable local character
and & is 9(X) — projective (see 4.3.7B) or projective, then I'(U, t) = Ay for all
U € 9(X) or for all U € B(X), respectively. Further, (I, t.) is functionally separated
by Lx = {f| there is w €I, and V with (V, f) € S(a)} (t. = 1[I, — see 0.14).

Proof. Leta €I,, ¢ > 0. By (1), there is (K, f) € S(«). By 1a and 2, there is an x —
function on K. We put S(a|f < g|K) = {yePy|f(y) < gp(y)}, Sla|g <f<
<e|K)={yePg|gp(y) <f(y) <e} (pis the canonical projection of P onto X,
ie., if x € P, a €L, then p(a) = x). If (K, f;) € S(«) and if g, is another x — function
on K, we set N(x|f, ¢,K,2f1,91) = S|f<g|K)uS(a|g, <fi < ¢|K)u
"U {a}. It is sketched in the following picture (S and T'is the first and the second set
in the union respectively):

Ix

X K X

——

We can easily see from 1la, 1b that the set N(a) of all N(«|f, 9, K, & f1, g1) is
a filter base round «. This holds for every « € P so that we get a closure ¢ in P. We
shall show that the sets from N(«) are ¢ — open, henceforth ¢ is a topology.

A: Let Be S(x|f < g|K), Bel,. Then by 1d, 0 < f(B) < g(v). We have to find
(K',f1) € S(B) and a y — function g, on K’ so that y € Pg., f(¥) < g p(y) implies
f(») < g p(y). There is & > 0 such that f(B) + ¢ < g(y). By 1c, there is (K', fy) €
€ S(B) with K’ = K and with f; = f on {y e Px. | f(y) 2 f(B) + ¢}. By 2 and 1a,
we may assume that there is a y — function g, on K’ with g; < f(8) + ¢ < g on K'.
Thus if y € Pg. and f(y) 2 g p(y), then g, p(y) < f(B) + & < g p(¥) = f(3) < £L(2),
s0 g, p(y) £ fi(y) which shows that for all y e Px. with fy(y) < g p(y) we have
f(v) < g p(y) as desired.

B: Now we want to find 6 > 0, (K, f{) € S() and a y — function g; on K’
(K’ is from A) such that f(y) < g p(y) if y € P., g7 p(y) < fi(y) < 6. Weset 6 = ¢
where ¢ is from A. In A we have found (K', f,) e S(B) with ¢ < f(B) + ¢ < g p(y) <
S f() £fu(v) if yePx, f(v) Z 9 p(y). Thus if ye Py, fi(y) <e then f(y) <
< g p(y). Hence S(B| g; < f1 <&|K) = S(a|f < g | K) for any y — function g
on K’ as desired.

C: Let feS(x|g < f<e|K), Bel,. We shall find (K’,f;) € S(f) and a y —
function g, on K’ such that g p(y) < f(y) < eif y e Py, g4 p(y) <fi(y) <e
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As 0% g(y) < S(B) < & there is 7> 0 with f(F) (LS5 90) + < g(p)
By lc, there is (K',fl)e S(B) with K’ = K, f; 2 max ,f’ 8) on. {v € Py, I If()’) -
—f(ﬂ)| > n}. By la, we may assume g < f(f) — n on K. NOW.’ ifyePy., ) =ze
then f(B) + 1 < & £ f(¥) £ fu(v), so fi(y) = e. Thus f0) <eif yep,, fi(y) < .
If f(7) < g p(v), 7 € P then f(y) < f(B) — n so f1(y) Z & hence £,(y) < ¢ implies
g p(y) <f(3). Thus S(B|g, <fi <&|K) = S(x|g <f<e|K) for any y—
function g, on K'.

D: Now we will find a y — function g} on K’ such that y e Py, f(7) < g} p(y)
implies g p(y) < f(y) < & (K’ f, ¢ are from C). Take a y — function g, on K’
with g, < &. Then for y € Py, with fi(y) < g, p(y) we have f,(y) <&, 50 g p(y) <_
<f(y) <& by C. Thus S(B|f, <g,|K)<=S(a|g<f< ¢| K) which completes
the proof of the openness of the ¢t — nbds of the points of P. Thus ¢ is a topology.

It easily follows from 1c that every f € Lx is ¢, — continuous. Thus (I, ) is func-
tionally separated by Lx, hence ¢, is Hausdorff. Thus so is ¢ as well.

Let o € P, a € I.. By 3b, the topology ¢, induced in I, by ¢ is finer than the closure £},
so all the py' :(Ay, by(t)) > Zy are continuous. If Ue%(X) then &y : %y —
- (I, t,) are continuous for all x e U as t, is coarser than t¥ (recall that if x € X,
ael,, (V,f) e S(x), then f, is an o« — function on #,, hence it is f; — continuous —
see 1d). By 4.1.4A or 4.1.5, all the py : Zy — (Ay, by(t)) are continuous, so they are
homeomorphisms. The definition of ¢ directly implies 4y < I'(U, 1) for all U € 2(X).

Let every Ve ¥ be normal, and let X have countable local character. Given
Ue%(X), xeU, aeXy and a continuous section r:U — (P, ) such that o« =
= r(x) = &y (a), then N = {y e U | r(y) = &y,(a)} + 0asxeN. The set {&y,(a) |
| € U} is closed in (Py, t) as t is Hausdorff. Thus N is closed in U. We want to show
that N = U if U is connected. We will prove the statement S: “Every y € N has an
open nbd W < U such that r(z) = &, ,(a)in W (here U need not be connected).

Let y € N. There is (K, f) € S(B), where f = r(y). We may assume K < U. Sup-
pose on the contrary that in every open nbd W < K of y there is xy with r(xy) =+
# &y x(a). The function g = f o r is continuous on K and by 1d, there is an open
nbd ¥ = K of y such that f(z) = f. &, ,(b) is constant on V for every beX,.
By la, we may assume V = K. Thus by 1d, g(z) = 0 iff (z) = &y (), so {zeK |
| £v..(a) = (2)} = {zeK | g(z) = 0}. There is V = ¥ with y € V. We may assume
K <= V. As X has countable local character, we may assume by 1d that there is a se-
quence {x,} in K which tends to y so that g(x,) > O for all n. As g is continuous on
the closed set M = {x,} U {y} so by the normality of ¥ and 4.3.3C, there is a y —
function h on ¥ with h = g on M. Then r(x,) ¢ N(B | f, h, K, & f, h) for every n and
any ¢ > 0. Thus r : U — (P, t) is not continuous, which is the desired contradiction.
Thus every y € N has an open nbd V = K of y with r(z) = &y ,(a) in ¥, so N is open
and closed hence N = U if U is connected.

Now, if & is 9(X) — projective and U € (X) then for every r e I'(U, t) there is
aeXy and xeU with r(x) = & (a). Indeed, for every x € U there is an open
nbd Ux < U of x and a, € Xy, with &y (a;) = r(x). By the statement S, for every
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x € X there is an open nbd Vx < Ux of x with &yx.(a,) = r(z) for all z € Vx. Then
v ={Vx | x € U} is an open cover of U. If Ve ¥, We set ay = gy,(a,). If V, We ¥,
Z=VaW=*0, zeZ, b=gyay), ¢c= owz(aw) then &, .(b) = 1(2) = &z..(c).
As & fulfils COND from 4.1.1E, we have b = c. Since & is 2(X) — projective and
U € 9(X), thus there is a € Xy with gyy(a) = ay for all Ve ¥ (see 4.3.7). Then
&y .x(z) = r(x) for all x € U. The proof is thereby complete.

4.3.9. Theorem. Given a normal and T, presheaf & = {Zy = (Xy, 1) |QUV] X}

(see 2.1.1A) from TOP, assume that the following conditions are fulfilled:

S1: & fulfils the condition (2) or (2') from 4.2.5, ZP and UCP,

S2: there is an open cover ¥~ of X such that every Ve ¥ has ZP,

S3: the relation ~ from 4.3.4 is an equivalence in P,

S4: every x € X has a well ordered countable filter base (Ax<) of its open nbds
whose ordinal type is w,, such that gyy+, maps Xy onto a ty,, — closed set
Quu+1(Xy) homeomorphically for all U € Ax.

S5: if M is a component of X,x, ye M, We Ax, W < M, then &y = lim Lpw,y

(B(W, y) = {UeB(X)| U connected, W = U, ye U} — see P3 from 4.3.6).

Then there is a topology t in P such that the canonical maps py : £y — (Ay, by(1))
are homeomorphisms and Ay < I'(U, t) for all U € B(X). Moreover, if every VeV~
is a normal topological space, X has countable local character and & is @(X) -
projective (see 4.3.7B), then I'(U, t) = Ay for all U € 9(X). Especially, I'(U, 1) = Ay
for all U e B(X) if & is projective, if every Ve ¥ is normal and if X has countable
local character.

Proof. We set & = {Fy = C(Zy — Q)| U e%(X)} (Q is the compact unit
interval). We show that the conditions of 4.3.6 are fulfilled. Clearly, P1—P3 of 4.3.6
hold. As & has ZP, so F1 from 4.3.6 holds. It follows from the normality of &,
S4 and 4.3.3C that F2 from 4.3.6 holds while F3 holds as Ax is countable. Clearly,
& fulfils F4, F5. Thus the statement of 4.3.6 holds, hence every x € X has an open
nbd M of x such that for every o € P, there is an M — function for o with respect
to ~ (M is the component of X with x € M; M is open as X is locally connected for &
has UCP). Given x € X, o € I,, we set S(a) = {(K, f) | K is an open nbd of x such that
there is a compoment M of X provided K = M, fis an M — function for a}. As Fy
are closed under maximum and minimum of two functions, we get by 4.3.6B that the
assumption 1b of 4.3.8 holds. In order to show that the conditions 1c, 3b of 4.3.8
hold, we prove the following statement T:

“Givenx e X,a el ¢> 0,6 2 0and a function g on I, such that {gy = g &y .|
| Ve Ax} is a thread through & ,,, then for the component M of X with x € M there
is an M — function f for « with respect to =~ so that f > max (g, 6)on M, = {yel, l
| l9(v) — 9(o)| = ¢} and that {f < & . | Ve Ax} is a thread through & ,,.”

Indeed, there is We Ax and a € Xy, with wa,x(a) = o. We may assume W to be the
smallest element of (Ax<) and put a, = ewr(a) for Ve Ax. By 4.3.3C, we can
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by induction construct a thread # = { fvl Ve Ax} through &,, so that fy, is an
ay — function in &, and that f, > max (¢y, ) on {be Xy | |g,(b) — gv(ay)| = ¢}

Then f, = lim & is an « — function on £, and f; = max (g, §) on M,. By 4.3.6A,
there is an M — function f for « with f, = f; as desired.

We show that the condition 1c of 4.3.8 holds. Given a component M of X, x e M,
ael, (K,g9)eS(a),yekK, pel,,e> 0, =0, then g, = g/I, is a function on I,
such that {g, = g, o fy,y| Ve A,} is a thread through &,,. By the statement T,
there is fe S(B) with f = max(g,d) on {y erI |g(y) - g(ﬁ)i > ¢}. By 4.3.6A,
f = max(g,8) on {yePy||g9(r) — 9(B)| = €} as desired. By S3, S5 and 4.3.6C,
we get that 1d of 4.3.8 is fulfilled with K = M (M is connected).

By 2.2.2A and 4.2.5, there is a topology ¢! in every stalk I, which is projectively
defined by a set Dx = C*(#, — R), so thatall the py : Zy — (Ay, by(st})) are homeo-
morphisms and that {f. &y . | U e Ax} is a thread through &, for every fe Dx.
We show that the condition 3b of 4.3.8 holds. Let a €I, and let a tf — nbd L of «
be given. As tg is projectively made by Dx, we may assume that there is g € Dx with
L={yel||s(») - g(@)| <&} Then # ={gy =go&y,|Vedx} is a thread
through &. We set § = &. By the statement T and 4.3.6A, there is (M, f) € S(«) with
fzmax(g,8) =5 =¢eonl, — L so{yel|f(y) <&} = Las desired. From the
assumption S1 and from 4.1.17B it follows that the canonical maps py : Hy — Ay
which belong to the & — hull (€ — hull) of & by & (by &; = {Fx,(Fy)|Ue
€ B(X)} — see 2.2.5A) are 1—1. By 4.1.5 and 4.1.1E, & fulfils COND from 4.1.1E.
Thus the conditions of 3.3.8 are fulfilled which proves the theorem.

The foregoing theorem can be easily strengthened in the sense of 4.3.7.

4.3.10. Definition. Let a presheaf & = {%y = (Xy, 7¢) |ouy| X} from TOP and
a nonempty set 2(X) <= %&(X) be given. & is called topologically D(X) — projective
if for every U € 9(X) and any open cover ¥~ of U, provided Vn We ¥, if V,We ¥
we have Zy = lim &, (Fy = {Zylovy| (¥ D} — see 4.11A). If I(X) = B(X)
then & is called topologically projective. (The same definition can be given in terms
of CLOS, UNIF, ... )

4.3.11. Remark. The following assertions are equivalent:

1) & is topologically 2(X) — projective,

2) & is 9(X) — projective (see 4.3.7B), fulfils COND from 4.1.1E, and the topo-
logy ty is projectively defined by the set of maps & = {QUV Xy Zy | Ve "/f}

for every U € 2(X) and any open cover ¥~ of U.

Proof. 1=-2: Let an open cover ¥" of Ue 9(X) and a ¥ — smooth family
# = {ay € Xy | Ve ¥} be given (see 4.2.1). As we can add all the finite intersections
of the sets from ¥” to ¥" and adapt # accordingly, we may assume VN We ¥
if V, We ¥ Setting hy(#) = ay, we get a family between {#} and #, (see 0.6),
thus there is a unique map f : {#} — & so that guy o f = hy for all Ve ¥". Thus
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fora = f(#) € Xy we have gyy(a) = ay forall Ve ¥, hence & is 2(X) — projective.

Ifa, b e Xy, av = gyy(a) = ouy(b) = by forall Ve ¥, then for # = {a, I Vev}
we have # = {by | Ve ¥}. As f is the unique map with gy - f(#) = a, we have
f(#) = a, so a = b. Thus & fulfils COND. Clearly, 7y is projectively defined by Z.

2 = 1: Given an open cover ¥~ of U € 9(X), a topological space Z = (R, t) and.
a family {fy: 2% "’(#Vl Ve¥'} between £ and &, we may assume Vn We ¥
if ¥, We¥ as above. If x € R then {fy(x) = a, | Ve ¥’} is " — smooth, so there is
a € Xy with eup(a) = ay for all Ve ¥". We set f(x) = a. Then f: # — &y is con-
tinuous (for Quy o f = fy are), and from COND it follows that f is unique. By 0.6,
Zy = lim ¥y

4.3.12. Remark. Given a topologically 2(X) — projective presheaf & = {Zy =
= (Xy, 1) |Quyl X} from CLOS, suppose that for every x € X and any open nbd V
of x there is D € 2(X) with x e D = V. Let us have an open cover ¥~ of X such that
for every We ¥ there is a closure (topology) tw in Py (see 4.3.4B; clearly, Py is the
covering space of the presheaf &y, = {% UIQuyl W}). Then there is a closure (topology)
t in P with the following properties:

A. If for any We ¥  the canonical maps py:Zy — (Ay, by(tw)) are homeo-
morphisms for all U e 2(X) with U = W, then py : Zy — (Ay, by(t)) are homeo-
morphisms for all U € 2(X). Especially, if & is topologically projective, then py :
: Zy — (Ay, by(t)) are homeomorphisms for all U e Z(X).

B. If for any We ¥ we have Ay = I'(U, ty) for all U € 9(X) with U = W, then
Ay = I'(U, 1) for all U e 9(X). Especially, if & is topologically projective, then
Ay = I'(U, t) for all U € #(X).

Proof. A:If xe X, weputstx = {We ¥ |xe W}. Ifael, and F < st x is finite,
and if Ny isa t, — nbd of a for We F, we set Ep = (\{Ny | We F}, Ba = {E; | F =
< st x, F finite}. Then %o is a filter base round o. These define a closure ¢ in P;
if all the t, are topologies then so is ¢ as well.

Let t,(t}) be the closure or the topology induced in I, by ¢ (by tw for We st x).
By 4.2.1, the closure or the topology bu(t) is projectively defined by the canonical
maps {fy,: Ay = (I ) | x € U} (see 4.1.1E). Thus py : Zy = (Au, by(?)) is con-
tinuous iff s0 is 9y o Py = Sy, : Tv (Ix, t,) for every x e U. It follows from the
definition of f that 1, is projectively defined by the identities {i : I, — (L., ;) | We
estx}, so &y, Xy~ (I, 1) is continuous iff so is &y, : Xy — (L, tiy) for all
Westx. If We st x, D € D(X), x € D = Vthen by the definition of by(tw) and 4.1.4A,
the canonical maps ¢p , : 'p — (I, i) are continuous for all x € D. If U € #(X),
xeU, Westx then there is De P(X) with xeDcUnW, and &y . =¢p o
o0up : Xp = (I i) As guy : Xy = Xy and &y 1 &) — (I, 1) are continuous,
thus &y , is. Hence py : Zy = (Ay, by(t)) is continuous for all U € #(X). If U € 2(X)
then there is an open cover € of U with ¢ = 2(X) such that for every C € % there
is We ¥ with C = W. Then p¢ : ¢ — (Ac, be(tw)) is a homeomorphism for every
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Ce%and any We ¥ with C « W. Let We ¥", Ce 4, C = W. As bc(t) is finer than
be(tw), so pe* = (Ac, be(t)) = Z ¢ is continuous. The map py' : (Ay, bu(t)) = 2y
is continuous iff 0 is @yc o Py ' : (Ay, bu(t)) = Zc for all C € € as & is topologically
9(X) — projective. But @ucopy' = pc' o oy, Where oyc = pcoQuco Py :
: (Ay, by(t)) = (Ac, b(1))- By 4.1.4A, ayc is continuous, hence so is py! as desired.

B. Let U e 9(X), reI'(U,t). Take the cover ¥ of U from the proof of A. If
Ce% and We ¥ with C = W then clearly r/C e I'(C, ty), so there is ac € X with
Ecxlac) = r(x) for all x € C. As & fulfils COND (see 4.3.11), the family {ac | C € %}
is ¥ — smooth. As & is 9(X) — projective, there is a € Xy, with gyc(a) = ac for
all Ce%. Thus r(x) = &y ,(a) for all xe U, so I'(U, t) = Ay. The other inclusion
follows easily from the definition of ¢. If % is topologically projective, we can set
2(X) = #(X) and the special statements follow.
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