[1] F. E. Browder:
Nonlinear operators and nonlinear equations of evolution in Banach spaces. Proc. Sympos. Pure Math. vol. 18, II, 1976.
MR 0405188 |
Zbl 0327.47022
[2] F. E. Browder:
Existence theory for boundary value problems for quasilinear elliptic systems with strong nonlinear lower order terms. in "Proceedings Symp. Pure Math." Vol. 23, pp. 269-286, Amer. Math. Soc., Providence, R.I., 1973.
MR 0340815
[3] Ch. Castaing:
Sur les multi-applications mesurables. Revue Inf. Rech. Op. 1 (1967), 91-126.
MR 0223527 |
Zbl 0153.08501
[4] S. Fučík:
Note on the Fredholm alternative for nonlinear operators. Comment. Math. Univ. Carolinae, 12 (1971), 213-226.
MR 0288641
[5] S. Fučík:
Nonlinear equations with noninvertible linear part. Czech. Math. J. 24 (1974), 467-497.
MR 0348568
[6] S. Fučík: Ranges of nonlinear operators. Vol. I-V, Lectures Notes, Charles University, Prague, 1976/77.
[8] A. Granas:
The theory of compact vector fields. Rozprawy Matematyczne, 1962.
Zbl 0111.11001
[10] S. Hildebrandt, E. Wienholtz:
Constructive proofs of representation theorems in separable Hilbert spaces. Comm. Pure and Appl. Math. 17 (1964), 369-373.
DOI 10.1002/cpa.3160170309 |
MR 0166608
[11] R. I. Kachurovsky: On Fredholm theory for nonlinear operator equations. Dokl. Akad. Nauk SSSR, 192 (1970), 751-754.
[12] R. I. Kachurovsky: On linear operators whose ranges are subspaces. Dokl. Akad. Nauk SSSR, 196 (1971), 168-172.
[13] T. Kato:
Perturbation theory for nullity difficiency and other quantities of linear operators. J. Analyse Math. 6 (1958), 273-322.
DOI 10.1007/BF02790238 |
MR 0107819
[15] A. Lasota, Z. Opial:
An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations. Bull. Acad. Pol. Sci., Ser. Sci. Math., astr. et phys. 13 (1965), 781-786.
MR 0196178 |
Zbl 0151.10703
[16] T. W. Ma:
Topological degrees for set-valued compact vector fields in locally convex spaces. Dissertations Math. 92 (1972), 1-43.
MR 0309103
[17] P. S. Milojevič: Multivalued mappings of $A$-proper and condensing type and boundary value problems. Ph. D. Thesis, Rutgers University, New Brunswick, N. J., May 1975.
[18] P. S. Milojevič:
Some generalizations of the first Fredholm theorem to multivalued condensing and $A$-proper mappings. Bulletino Un. Math. Ital. (5) 13-B (1976), 619-633.
MR 0435964
[19] P. S. Milojevič:
A generalization of Leray-Schauder theorem and surjectivity results for multivalued $A$-proper and pseudo $A$-proper mappings. J. Nonlinear Anal., Theory, Methods and Appl. 1 (3) (1977), 263-276.
DOI 10.1016/0362-546X(77)90035-9 |
MR 0637079
[20] P. S. Milojevič:
Some generalizations of the first Fredholm theorem to multivalued $A$-proper mappings with applications to nonlinear elliptic equations. J. Math. Anal. Appl. 65 (2) (1978).
MR 0506319
[21] P. S. Milojevič: On the solvability and continuation type results for nonlinear equations with applications I. Proc. Third Inter. Symp. on Top. and Applic., Belgrade, 1977, 468 to 502.
[23] P. S. Milojevič, W. V. Petryshyn:
Continuation theorems and the approximation - solvability of equations involving multivalued $A$-ргорег mappings. J. Math. Anal. Appl. 60 (3) (1977), 658-692.
DOI 10.1016/0022-247X(77)90007-5 |
MR 0454760
[24] P. S. Milojevič, W. V. Petryshyn:
Continuation and surjectivity theorems for uniform limits of $А$-рrореr mappings with applications. J. Math. Anal. Appl. 62 (1978), 368-400.
DOI 10.1016/0022-247X(78)90134-8 |
MR 0482432
[26] R. D. Nussbaum:
The radius of the essential spectrum. Duke Math. J. 38 (1970), 473--478.
MR 0264434 |
Zbl 0216.41602
[27] W. V. Petryshyn:
On projectional-solvability and the Fredholm alternative for equations involving linear $A$-ргорег operators. Arch. Rat. Mech. Anal. 30 (1968), 270-284.
DOI 10.1007/BF00281535 |
MR 0231221
[30] W. V. Petryshyn:
Fredholm alternative for nonlinear $A$-ргорег mappings with applications to nonlinear elliptic value problems. J. Funct. Anal. 18 (1975), 288-317.
DOI 10.1016/0022-1236(75)90018-X |
MR 0361963
[34] W. V. Petryshyn, P. M. Fitzpatrick:
On 1-set and -ball contractions with application to perturbation problems for nonlinear bijective maps and linear Fredholm maps. Bulletino Un. Math. Ital. (4) 7 (1973), 102-124.
MR 0343114
[35] В. N. Sadovskii:
Ultimately compact and condensing mappings. Uspehi Mat. Nauk, 27 (1972), 81-146.
MR 0428132
[36] С. A. Stuart:
Some bifurcation theory for $k$-set contractions. Proc. London Math. Soc. (3) 27 (1973), 531-550.
MR 0333856 |
Zbl 0268.47064
[37] J. F. Toland:
Global bifurcation theory via Galerkin method. J. Nonlinear Anal., Theory, Methods, Appl. 1 (3) (1977), 305-317.
MR 0516195
[38] A. Vignoli:
On quasibounded mappings and nonlinear functional equations. Atti Acad. Naz. Lincei Rendi. cl. sci. Fiz. Mat. Natur. (8) 50 (1971), 114-117.
MR 0303379 |
Zbl 0254.47089
[39] J. R. L. Webb:
On a characterization of $k$-set contractions. Accad. Naz. Lincei. 8 (1971), 358-361.
MR 0306991
[40] J. R. L. Webb:
On degree theory for multivalued mappings and applications. Bulletino Un. Mat. Ital. (4) 9 (1974), 137-158.
MR 0367740 |
Zbl 0293.47021
[41] F. Wille: On motone operators with perturbations. Arch. Rational Mech. Anal. 46 (1972), 269-388.