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INTRODUCTION

In [18, 20], the author established several extensions of the first Fredholm theorem
to nonlinear multivalued mappings of A-proper and condensing type. It is the pur-
pose of this paper to establish several Fredholm alternatives for multivaiued A-proper
and condensing mappings using our results from [18, 20], to study the ranges of the
sums of various classes of nonlinear mappings and to apply some of our abstract
results to establishing Fredholm alternatives for contingent integral equations and
for generalized boundary value problems for nonlinear ordinary differential equations.

The organization of the paper is as follows. In the first part of Section I we introduce
some basic definitions and examples and prove a Fredholm alternative for multi-
valued A-proper mappings. In particular, using our recent new example of A-proper
maps, we obtain a Fredholm alternative for the sum of nonlinear a-stable and
condensing mappings. The important feature of this result is that it cannot be obtained
by either the theory of monotone mappings or the theory of condensing mappings.
Our results extend the alternatives of KACHUROVSKY [11], HILDEBRANDT and
WiENHOLTZ [10], HEss [9] and PETRYSHYN [29], [30]. In the second part of Section 1
we establish various solvability results for the equation fe A(x) — T(x) with 4
linear (unbounded) and T nonlinear and quasibounded.

In the first part of Section 2 we establish a Fredholm alternative for multivalued
condensing mappings and some further extensions of the first Fredholm theorem to
these mappings. In the second part of Section 2 we prove some surjectivity results
involving 1-¢-contractive mappings and study in some detail the solvability of
fe A(x) — T(x) with 4 unbounded using the assumption that the range of T'is con-
tained in the range of A. Some of these results include the corresponding ones of
Fucik, WEBB, PETRYSHYN-FITZPARTICK and others.

*) This work was supported in part by NRC Grant A 4556.
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In Section 3 we derive Fredholm alternatives and some surjectivity results for con-
densing perturbations of accretive, pseudo-contractive and a-stable maps, while
applications of our abstract results to contingent integral equations and generalized
BVP for nonlinear differential equations are given in Section 4.

1. FREDHOLM ALTERNATIVE FOR MULTIVALUED A4-PROPER MAPPINGS
AND RANGES OF THE SUMS OF NONLINEAR MAPPINGS

Let X and Y be normed linear spaces, {E,} and {F,} be two sequences of oriented
finite-dimensional spaces and {V,}, {W,} be two sequences of continuous linear
mappings with V, mapping E, injectively into X and W, mapping Y onto F,.

Definition 1.1. A quadruple of sequences I' = {E,, V,, F,, W,} is said to be an
admissible scheme for (X, Y) if dim E, = dim F,, n 2 1, dist (x, V,(E,)) - 0 as
n — oo for each x in X and |[W,| < M for all n.

Some example of such schemes are given below. To that end, assume that X, = X
is oriented and finite-dimensional with dist (x, X,) - 0 as n - oo for each x in X
and let ¥, be a linear injection of X, into X.

(a) Let Y, = Y be finite-dimensional and oriented, dim Y, = dim X, for each n
and let {Q,} be a sequence of continuous linear mappings of ¥ onto ¥, with |Q,|| <
<M,n2z1 Then I, = {X,, V,; Y, Q,} is admissible for (X, Y).

(b) If Y= X, Y, = X,and W, = P,is a projection of X onto X, such that |P,| <
< M for all n, then I', = {X,, V,; X,, P,} is admissible for X.

(c) Let P, be as in (b) and Q, a continuous linear projection of Y onto F, = Y
with Q,y — y for each y in Y. Then I', = {X,, P,; Y,, Q,} is a projectionally com-
plete scheme for (X, Y).

Let D= X, D, =V, '(D), T: D - 2" and T, = W,TV, | D,. Consider the equa-
tion

(1) JeT(x) (feY)
and associate with it the following approximate equations
2 W,(f)e W,TV,(u) (ueD, neN).

Definition 1.2. Equation (1) is said to be feebly approximation solvable with
respect to I' = {E,, V,; F,, W,} if for all large n, there exists a solution u, of Eq.
(2) such that fe T(x) with x e cl {V,(u,)}.

Denote by BK(X) and CK(X) the families of all nonempty bounded, closed and
convex, and compact and convex subsets of X respectively.

Definition 1.3. A multivalued mapping T: D = X — 2Yis said to be approximation
proper (A-proper) w.r.t. I' if: (i) T, : D, —» CK(F,) is upper semicontinuous, n = 1;
and (i) whenever {V,(u,,)]|u, € D,} is bounded and |W,(y,)— W,(f)| -0
as k — oo for some Y, € TV, (u,,) and f € Y, then some subsequence V,,,((l.)(u,,w)) -
— x e Dand f e T(x)-

388



Singlevalued A-proper mappings have been extensively studied by many authors
(cf. [31]) and by the author in the multivalued case (cf. e.g., [17—24]).

For a bounded set Q = X, the set-measure of noncompactness of Q is defined
([14]) by (@) = inf{d > 0 l 0 has a finite covering by sets of diameter less than d},
and the ball-measure of noncompactness of Q is defined (([35]) by x(Q) = inf {r >
> Ol Q can be covered by a finite number of balls of radii r with centers in X}.
Let ¢ be either of these measures. A mapping T: D = X — CK(X) is called k-¢-con-
tractive if, for each bounded Q = D, ¢(T(Q)) < k ¢(Q); it is ¢-condensing if, for
each Q = D with ¢(Q) * 0, $(T(Q)) < ¢(Q).

We have shown in [17] that if S: X — CK(X) is a generalized contraction and
C:D <= X - CK(X) is compact, then I — S — C is A-proper w.r.t. I',, Moreover,
a duality, strongly monotone and of (KS) type mappings are A proper (cf. [17, 23]).

Cendition (C): Whenever {u, € E,} is such that V,(u,) - x in X and W, T V,(u,) > f
in Y, then x € D(T) and Tx = f.

It is easy to see that condition (C) holds for T + F if: (i) T is continuous and F
is demicontinuous, or (ii) Y is reflexive, T is demiclosed and K-quasibounded with
W,K = QK = K and F is demicontinuous, or (iii) T is (demi) closed, Q,Tx = Tx
for x € X,, and F is continuous. Modifying somewhat the proof of our Proposition
2.1in [19], we obtain the following extension of it.

Example A. Let X and Y be n,-Banach spaces with a scheme ', and T: X —» Y

be continuous and a-stable, i.e.,

(3) [0, Tx — Q,Ty| = ¢|x — y| forall x,yeX,, nz1

and some constant ¢ > 0. Then, if F:X — CK(Y) is a k-ball contraction with
k <c and T + F satisfies condition (C), T+ F is A-proper w.r.t. . If ¢ =1,
F could be allowed to be ball-condensing.

As T one can take a c-strongly monotone mapping as was first done by Toland
[36], or a c-accretive mapping (i.e., (Tx — Ty, x — ¥), = ¢|x — y|* for all x, y
~in X, where (x, y), = sup {(w, x) | we J(y)} with J the normalized duality mapping)
as was done by the author [19].

We shall need the following result of the author

Theorem A ([20]). Let X and Y be normed linear spaces with a scheme I' and
T:X — 2' be A-proper w.r.t. I'. Let A:X — 2¥ be odd on X\ B(0, r) for some
r >0, W,AV, : E, - CK(F,) and for all large n
4) Wyl = ([x]) for xeVi(E,), yeA(x),
where ¢ : R* — R™ is a continuous function. Suppose that for each f in Y there is
an ry 2 r such that '

«Tx — f, Ax) < c(||x|))M, for xedB(0,r)),
where o(Tx — f, Ax) = sup d(y — f, Ax). Then the equation fe T(x) is feebly

yeTx
approximation solvable w.r.t. I' for each f in Y.
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Our first result is the following Fredholm alternative involving multivalued A-proper
mappings that are in some sense close to linear A-proper mappings (i.e., condition (5)
below holds). Examples of such mappings can be found in Sections 3 and 4.

Theorem 1.1. (Fredholm alternative) Let X and Y be Banach spaces with a scheme
I, A:X — Y linear continuous and A-proper w.r.t. I, and T:X — 2Y A-proper
w.r.t. I', and such that
(5) lim sup (T, Ax) <k

Ixli=o  [|x]
with k sufficiently small. Then, either N(A) = {0}, in which case the equation
fe T(x) is feebly approximation solvable for each f in Y, or N(A) * {0}. In the
latter case, assuming additionally that R(T) = N(A*)* (= R(A)) with dim N(4) =
= codim R(A), the equation f e T(x) is feebly approximation solvable if and only
if fe N(A*)*. ‘

Proof. Suppose first that N(4) = {0}. Then, in view of Lemma 2.1 in [20], for
each large n
[Qudx| = ko|x| forall xeX,,

and some k, > 0. Since k is sufficiently small, the first assertion follows from
Theorem A.

Next, suppose that N(A) + {0} and R(T) = R(4). Since dim N(4) =
= codim R(A) < oo there exist closed subspaces X; = X and Y, = Y such that
X =N(4)® X, and Y =Y, @ R(4) with dim Y; = dim N(4). Let L be a linecar
isomorphism of N(4) onto Y, and P be a continuous linear projection of X onto
N(A4). Then C = LP:X - Y, is compact and therefore, 4, = A + C and T, =
= T + C are A-proper w.r.t. I', with

lim sup M < lim sup BI% 2%) s
i=i=e x| (EEEI.

Moreover, if A4,(x) = 0 then A(x) = —C(x)e Y, n R(4) = {0}, i.e., LP(x) =0
and so P(x) = 0. Thus x € X; with A(x) = O which implies that x = 0 by the in-
jectivity of 4 on X,. Again, by Lemma 2.1 in [20], | Q,4,x| = kx| for all x € X,,
n large, and some k, > 0, and therefore the equation f € T(x) + C(x) if f.a. solvable
for each f in Y by Theorem A.

Next, suppose that fe R(A). Then C(x)ef — T(x) = R(A) since R(T) < R(A)
and so C(x) = 0 and fe T(x). Conversely, if fe T(x) is solvable, then fe R(A4)
since R(T) = R(4). 4

Corollary 1.1. (Fredholm alternative for the sum of a-stable and condensing
maps.) Let X be a m,-Banach space and Y a n;-Hilbert space with projectionally
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complete schemes I'; and T'; = {R(Qy), Qx; R(P}), P¥} for the pairs (X, Y) and
(Y*, X*) respectively. Suppose that A, T: X — Y are continuous and a-stable with
A linear, i.e. for all large n,

(6) 10.4x| = ¢,|x| forall xeX, andsome ¢, >0,

(in which case,

PYA*f| 2 ¢, |f| for all f e R(Q}) and some ¢, > 0([27])) and
(7) 10.Tx — Q,Ty| 2 c5|x — y| for x,yeX, andsome c;>0.

Suppose also that F,, F, : X — Y are demicontinuous k-ball contractive, i = 1, 2,
respectively with k, < min {c,, ¢,} and F, linear nad either k, < c; or F, is
ball-condensing if ¢y = 1. Then, if in addition

8) lim sup [Tx + F2x"——“Ax — F x| <k
lIx]| =0 X

for some sufficiently small k, either N(A + F,) = {0}, in which case the equation
Tx + F,x = f is feebly approximation solvable w.r.t. I', for each f in Y, or
N(A + F,) + {0}. In the latter case, assuming additionally that

R(T + F,) = N(4* + F})* (= R(4 + F,)),

the equation Tx + F,x = f is feebly approximation solvable w.r.t. I'. if and
only if fe N(A* + FY)".

Proof. In view of Theorem 1.1 it is sufficient to show that A + F, and T + F,
are A-proper w.r.t. I, and that dim N(4 + F;) = codim R(4 + F,). But, by
Example 4 and inequalities (6) and (7) we have that A + F, and T + F, are A-proper
w.r.t. I',. Moreover, since A* is also a-stable and F7} is k,-ball condensing ([39]),
again by Example 4, A* + F} is A-proper w.r.t. I'y. Hence, dimN(4 + F,) =
= codim R(4 + F,) ([27]). «

Remark 1.1. In Corollary 1.1 we may allow F, to be multivalued and Y to be
a m,-Banach space provided we know that dim N(4 + F,) = codim R(4 + F,)
which is so if, e.g., F¥ is also k,-ball contractive. In particular, we have

Corollary 1.2. Suppose that X and Y are m,-Banach spaces, A, T:X — Y are
ciaccretive, i = 1,3, respectively with A linear and F,F,:X — Y demicon-
tinuous ki-ball contractive, i = 1, 2, respectively with k, < min {c,, ¢,}, F, linear
and F} k,-ball contractive and either k, < c5 or F, is ball-condensing if c; = 1.
Then, if (8) holds, the conclusions of Corollary 1.1 are valid.

Remark 1.2. When 4 = T is linear and positive definite, F; = F, linear and
compact and X = Y = H is a n,-Hilbert space, Corollary 1.2 reduces to the alter-
native proven by Hildebrandt and Wienholtz [10]. When T = A + N with 4 and T

391



singlevalued and A-proper with |[Nx|//[x| - 0 as || x| - oo, Theorem 1.1 was proved
by Petryshyn [30], which on the other hand extends the alternatives of Kachurovsky
[11] and Hess [9] for compact and of type (S) mappings respectively.

We continue our exposition in this section by studying equations of the form
fe A(x) — T(x) with A linear and A — T not necessarily A-proper. Instead, we shall
assume that 4 has a (partial) inverse A™! such that I — A'T is A-proper and
R(T) = R(A). The case of infinite dimensional null space of A is also studied. We
need the following result which is of interest in its own right.

Theorem 1.2. Let I' = {E,, V,; E,, P,} be an admissible scheme for (X, X) with
[P.]| £ M and T:X — 2% satisfy
) |T| = lim sup [T < i,
Ixi~e [|x] M
where ITx] = sup {||y| |y € T(x)}. Then, if I — T is A-proper w.r.t. I' the equation
fex — T(x) is feebly approximation solvable w.r.t. I' for each f in X.

Proof. For each fin X we have

limsupw = hmsupw < i.
llxl| = (& Isi=e x| M

Hence, for ¢ > 0 small there exists r > 0 such that [Tx - f| < (1/M — &) |x|| for
all |x|| = r. Since |P,Ix|| = |x| for each x € E,, n = 1, the conclusion of the theorem
follows from Theorem A. 4

The existence assertion of Theorem 1.2 with T singlevalued, ITl < 1, has been
proven by GRANAs [8], ViGNoL1 [38] and PETRYSHYN [28] in the compact, ¢-
condensing and 1 — ¢-contractive case respectively and constructively by Petryshyn
(see [31]) in the case when pI — T'is A-proper w.r.t. a projectionally complete scheme
for each p > 1 (see also MILOJEVIC [17] for the multivalued case).

Condition (9) can be weaken provided we require that pI — Tis A-proper for each
p = 1 (cf. Proposition 2.5 in [23]). More generally, we have

Theorem 1.3. Let A:X — Y be a linear bijection and T:X — 2¥ such that
pl — A™'T:X — 2% is A-proper w.r.t. T for each p > 1 and either T is odd or
for some R > 0

(10) AA(x)¢T(x) for ||x| 2R and A>1.

Suppose that for each f in Y there exists an v =2 R such that either one of the fol-
lowing conditions holds:

(i) I — A™'T is A-proper w.r.t. I'y and
tA™N(f) ¢(I — A™'T) (8B(0, ry)) for te[0,1];
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(ii) For some y > 0,
(11) ”x - A7 (y) - tA_](f)” 2y forall yeT(x), xedB(0,r[)

te [0, 1] andI — A™'Tsatisfies condition (+ +), i.e., whenever {x,} < X is bounded
and y,— g in X for some y,e(I — A™'T)(x,), then ge x — A~* T(x) for some
xeX.

Then the equation f € A(x) — T(x) is solvable for each f in Y.

Proof. Suppose first that assumption (ii) holds. Then condition (11) implies
that there exists an a, > 0 such that for each a € (0, ao)

tA7Y(f) ¢ (1 + @)1 — A~'T)(3B(0, r,)) for te[0,1].
Let ae(0,a,) be fixed. Then the A-properness of (1 + @)1 — A™'T implies
that there exists n, = 1 such that for n = n,,
tP, A7'(f)¢((1 + a)I — P,A"'TV,)(éB,), te[0,1],
where B, = V, '(B(0, r,)). Consequently, for n = n,
deg((1 + @)1 — P, A"'TV, — P,A"'(f), B,, 0) =
=deg((1 + «)I — P,A"'TV,,B,,0) + 0

if Tis odd.
Next, if (10) holds, then
(12) Ml+a)x¢ A" T(x) for [x]| 2R, 2>1,

the homotopy F,(t,u) = (1 + «)u — tP,A~*TV,(u) does not vanish on [0, 1] x
x 0B,, and therefore [16], deg (1 + a)I — P,A™*TV,, B,, 0) # 0. Hence, in either
case the equation P,A”'(f)e(1 + a)u — P,A™'TV,(u) is solvable in B, for all
large n which by the A-properness of (1 + a)I — A™'T implies the solvability
~of A7'(f)e(1l + a)x — A7 T(x) in B(0, r;). Let o — 0 and x; € B(0, r,) be such
that for some y,e T(xy), x, — A7 '(y) = A7(f) — aux, = A7'(f) as k> .
Then, by condition (+ +) the equation f e A(x) — T(x) is solvable. '

Next, if (i) holds, then repeating the above arguments with « = 0 we get the
solvability of P,A™'(f) e u — P,A™'TV,(u) for all large n which by the A-properness
of I — A™'Timplies the solvability of f € A(x) — T(x). An alternative proof of part
(i) can be obtained from Proposition 2.5 in [23].

Remark 1.2. It is easy to see that condition (i) holds if A — T satisfies condition
(+):if {x;} = X is such that y, — y for some y, € (4 — T) (x,), then {x,} is bounded.
On the other hand, this condition is implied by many well known conditions (e.g.,
condition (ji) of Lemma 1.1 below, K-coercivity of A — T, etc.). We also add that
condition (+) for A — T does not imply (11) if 4 is not continuous.

Regarding condition (10) we have the following elementary lemma.
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Lemma 1.1. Condition (10) is implied by either one of the following conditions:

(i) There exists a constant ¢ > 0 such that whenever 0 € A(x) — tT(x) for some x
and te[0,1], then ||x|| £ ¢;

(i) lim sup sz—l <1/ja™Y.
Ixli—o | x|

We complete this section by applying Theorems 1.2 and 1.3 to the sum of unbound-
ed linear and quasibounded nonlinear mappings.

Let X and Y be Banach spaces, 4 : D(4) = X — Y a closed linear mapping, not
necessarily densily defined, with the closed range and whose null space, N(A4), admits
an orthogonal complement in X, i.e., there exists a closed subspace U of X such that
X =N(4) @ U. Let X, = D(4), 4y: D(4) = X, > Y defined by A,(x) = A(x)
and Ap:Y* - X its adjoint. Then by Kato’s result [13], R(4) = N(43)* =
= {ye Y|(y, y*) = 0 for all y* € N(47)} and the restriction 4, of 4 to D(4) N U
is injective. Hence, its inverse A7 ' : R(4) - D(A) n U is continuous.

Now, as an easy consequence of Theorem 1.2 we have

Theorem 1.4. Let A : D(A) = X — Y be a closed linear mapping with the closed
range and X = N(A) @ U for some closed subspace U of X. Let T: X — 2Y be
such that R(T) = R(4), I — A7'T:U — 2" is A-proper w.r.t. Iy for (U,U) and

(13) |T| = lim sup lzﬂ <—— .
i sl = M]4;

Then the equation f € A(x) — T(x) is solvable if and only if f e N(Ag)*.

Proof. Let feN(45)' = R(A). Since |47'T| < 1/M, the equation Aj'(f)e
€ x — A" T(x) is solvable in U n D(A) by Theorem 1.2, and therefore, so is fe
€ A(x) — T(x).

Conservely, if fe A(x) — T(x) is solvable, then fe R(4) = N(43)* by R(T) =
< R(A). «

Theorem 1.5. Suppose that A and T satisfy all the assumptions of Theorem 1.4
except condition (13). Suppose that A — T satisfies condition (+) on D(4) n U,
pl — A{'T:U - 2V is A-proper w.r.t. T, for each p = 1 and either T is odd or
for some R > 0

(14) AA(x)¢T(x) forall |x| 2R in D(A)aU, A>1.
Then the equation f e A(x) — T(x) is solvable if and only if fe N(Ag)*.

Proof. It suffices to show that conditions (i) and (12) with & = 0 of Theorem 1.3
hold on U (cf. its proof). Since A — T satisfies (+), condition (i) holds on U.
Moregver, since for x € D(4) N U we have that A A(x)e T(x) if and only if Axe
€ A7 T(x), condition (12) with & = 0 holds on U.
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Remark 1.3. Using Theorem A we see that condition (13) in Theorem 1.4 can

be weaken to

I AT = Fx| _ k.

im sup <

lix]] = o x| M

xeU
with k sufficiently small and F : U - U linear continuous and such that I — F is
injective and A-proper w.r.t. I',. However, if N(I — F) & {0}, then by Theorem 1.1,
fe A(x) — T(x) is solvable iff fe A(R(I — F) n D(A)) provided R(I — A7'T) =
= N(I — F*)* (= R(I — F)) and dim N(I — F) = codim R(I — F).

Remark 1.4. When I — A7'T: U — 2Y is not A-proper, Theorem 1.5 still holds
provided that we assume conditions (+ +) and (11) of Theorem 1.3 instead of
condition (+). As observed before, (14) is implied e.g., by condition (i) or (ii) of
Lemma 1.1. Theorems 1.4 and 1.5 are also valid when A7 'Tis a k — ¢-contractive
mapping as shown in Section 2.

The following observations regarding Theorems 1.4 and 1.5 are perhaps in order.
If X is a Hilbert space and A:D(4) = X » X a closed linear density defined
mapping with R(4) = N(A4)*, then R(A) is closed if A7 ' : R(4) - R(4) is compact,
and X = N(A4) @ R(4). On the other hand, if X is also separable and A : D(4) =
= X — X a closed linear density defined mapping with N(4) = N(4*) and {x | x e
e D(4), |x| £1, |A4x| £ 1} is compact, then we know that dim N(4) < oo,
R(A) = N(A)* is closed and the partial inverse A;' is compact. Moreover, if
T:X — BK(X)is u.s.c. and bounded with T(R(4)) = R(A), thenI — A7'T: R(4) -
— CK(R(A)) is A-proper w.r.t. a natural scheme for X. More generally, if A;7'T
is ball-condensing, then I — A 'Tis A-proper.

2. FREDHOLM ALTERNATIVE FOR MULTIVALUED CONDENSING
MAPPINGS AND RANGES OF THE SUM OF NONLINEAR MAPPINGS

In the first part of this section we prove a Fredholm alternative for multivalued
condensing mappings and a further extension of the first Fredholm theorem to 1 — ¢-
contractions. In the second part we prove some surjectivity results for these mappings
and continue the study of fe A(x) — T(x).

Theorem 2.1. (Fredholm alternative) Let X be a Banach space, T: X — CK(X)
be upper semicontinuous and ¢-condensing and A :X — X be a linear k — ¢-
contraction with k < 1 and such that

(15) tim sup 220 A%) <

sl x| T

with ko sufficiently small. Then, either N(I — A) = {0}, in which case the equation
(16) fex = T(x)
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is solvable for each f in X, or N(I — A) + {O0}. In the latter case, assuming addi-
tionally that R(I — T) = N(I — A)*)* (= R(I — A)), Equation (16) is solvable if
and only if fe R(I — A).

Proof. Suppose first that N(I — A) = {0}. Then, in view of Lemma 1.1 in [18], the
solvability of Equation (16) follows from Theorem 1.1 in [18]. Next, suppose that
X, = N(I — A) + {0}. By our assumptions on A and the results in [26], the range
R((I — A)*) is closed, dim N(I — A) < oo and dim N(I — 4) = dim N((I — A)*).
Since dim N(I — A) = codim R(I — A), there exists a closed linear subspace X,
of X and a finite dimensional subspace Y, of X such that dim N(I — 4) = dim Y,,
X=X ®X,=Y,®Y,, where Y, = R(I — A), with Y, =(I — 4)(X,) and
I- A|x2 having a bounded inverse.

Now suppose that fe R(I — A) and let L be a linear isomorphism of N(I — A)
onto Y, and P be a continuous linear projection of X onto N(I — A). Define a linear
map A; : X > XbyA, = A+ C,where C=LP:X - Y,. Clearly, A, isa k — ¢
contraction. Moreover, I — A, is one-to-one. Indeed, suppose that x — 4;x = 0.
Then x — Ax = —CxeR(I — A)n'Y, = {0} and consequently, "Px = 0 since
Cx = LPx = 0 and Lis one-to-one. Hence, x € X, with x — Ax = 0 and so x = 0,
proving thatI — A, is one-to-one. Next, by Lemma 1.1 in [ 18], there exists a constant
k, > 0 such that

[x — 4;x| = ky||x| forall xeX.

Since k, is sufficiently small and

i sup 2(TG) + €0 t A + C6) _ i oo TE) t AR _
[Ix]| = o X lIx|[ =0 X

we have that the equation fe x — T(x) — C(x) is solvable by Theorem 1.1 in [18].
Since R(I — T) = R(I — A), it follows that C(x)ex — T(x) — f < ¥; and so
C(x)e Y; n'Y, = {0}. Hence, fe x — T(x).

Conversely, suppose that fex — T(x). Then, since R(I — T) < R(I — A),
feR(I — A4).

Remark 2.1. If T: X — X is asymptotically linear, i.e. there exists a continuous
linear mapping A4 : X — X such that for all x in X

T(x) = A(x) + N(x) with |N(x)

el =0 as x| - oo,

the Fredholm alternative for T compact was obtained by Kachurovsky [14] and for
T k-ball-contractive, k < 1, by Petryshyn [29]. Our alternative extends these to
multivalued ¢-condensing nonasymptotically linear mappings.

Let ¢, : R" - R* be continuous with ¢,(r) < ¢(r) for all r and ¢ as defined
before. Then we have
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Theorem 2.2. Let X be a Banach space, T:X — CK(X) u.s.c. and 1 — ¢ con-
tractive and A : X — CK(X) odd. Suppose that to each f in X there corresponds
a constant r; > 0 such that

(17) [x — y" > c(”x“) forall yeA(x) with |x| =r,
and
(18) A(T(x) + £, A(x)) < ei(|x]) Sforall x| =r,.

Then, if 1 — T satisfies condition (+ +), the equation fe x — T(x) has at least
one solution for each f in X.

Proof. Let f be a fixed element in X and define Ty(x) = B T(x) for x € X, where
Be(Bo, 1) with By > 0 such that 1 — By + ¢,(r) < ¢(r;). Since T(@B(0, r)) is
bounded, we can select f, < f; < 1 such that

(1=p)|y| =1 -8y forall yeT(dB(0,r;)) and Be(B,1).

Then, for each B e (B, 1) and x € X with ||x| = r,, we have that
o Ty(x) + f, A(x)) = sup inf By +f—z|
yeT(x) zeA(x)

< sup inf [(1=B) |y + |y +/—z]] =

yeT(x) zeA(x)
S U= fo+ oT(x) + £, AX) = 1= Bo + c(ry).

Set ¢,(r) = 1 — By + ¢4(r). Thus, for each fe (B, 1),

; A(Ty(x) + £, A(x)) £ ex(|x])) for [x] = r,
[x = y| 2 ¢|x| forall yed(x) with |x]|=r,.

Since ¢,(r;) < ¢(ry), by Theorem 1.1 in [18] (see its proof ), we have that the equation
fex — Ty(x) is solvable for each Be(By,1). Let B,e(By,1) with g, » 1 and
- x, € B(0, ry) be such that fe x, — T, (x,). Then f = x, — B,y, for some y, € T(x,),
and x, — y, = (B, — 1) ¥, + f = f as n > oo since {y,} is bounded. By condition
(+ +), there exists x € B(0, r;) such that fe x — T(x). 5

Theorem 2.2 and Remark 2.2 below imply

Corollary 2.1. Let A:X — CK(X) be u.s.c. positively homogeneous and ¢-
condensing, T: X — CK(X) u.s.c. and 1 — ¢ contractive, A and T satisfy condition
(15) and x = 0 if xe A(x). Then, if I — T satisfies condition (++), I — T is
surjective.

Remark 2.2.In [18] we have shown that condition (16) holds if A is u.s.c., positively
homogeneous ¢-condensing and such that x € A(x) implies x = 0. If A is not odd,
then requiring that T'be odd we can still obtain the solvability of f € x — T(x) provided
also that c(r) — o0 as r — o0, as a consequence of Theorem 2.4 below.
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We continue our exposition by establishing the solvability of fe x — T(x) under
several new growth conditions on I — T. The following result was proven construc-
tively in [21] for ball-condensing mappings as a special case of our Theorem 1.
[21] for A-proper mappings.

In case of 1-ball-condensing mappings it can also be obtained from the corresponding
theorem for uniform limits of A-proper mappings (see the Note.at the end of the
" paper). The growth condition (19) below was first used by WILLE [41] and later by
BROWDER. [2], Milojevi¢-Petryshyn [24] and Milojevi¢ [21] (see also Notices Amer.
Math. Soc., January 1977, 77T-B27.)

Theorem 2.3. Let X be a Banach space and T:X — CK(X) u.s.c. and 1 — ¢-
contractive such that I — T satisfies condition (+ +) and
(19) u| + (—%JTX) —» o as |x|| > o foreach uex— T(x)
X
where J : X = X* is a section of the normalized duality mapping. Then the equa-
tion f € x — T(x) is solvable for each f in X.

Proof. Let f in X be fixed. By condition (19), there exists an r, > 0 and y > 0
such that

(20 |[x —u—1tf| =2y for ueT(x) with Mx“ >r,, tel0,1],
e Ix = ul + (;HJ—) S0 for ueT(). |x] zr,.

By the boundedness of T, there exists §, > 0 such that for each & (B,, 1)
|x = Bu —tf| 292, ueT(x) with |x|=r;, te[0,1].
Fix Be(By, 1) and for each Q = B(0, r,) the homotopy H :[0, 1] x B(0, r,) —
— CK(X) given by Hy(t, x) = BTx + tf is such that
$(Hy([0, 1] x Q) = (B T(Q) + {tf | te [0, 1]}) = $(B T(Q)) = B #(Q).
Hence, by the homotopy theorem ([33]) deg (I — BT — f, B(0, ry), 0) = deg (I — BT,
B(0, r;), 0). Next, define the homotopy F : [0, 1] x B(0, r;) - CK(X) by Fy(t, x) =
= Bt T(x). We claim that
x ¢ Fyt,x) foreach te[0,1], |x|| =r,.

If not, then there would exist 5 € [0, 1] and ||x0u = r; such that for some u, €
e T(xo), Xo — Btouo = 0. But, then t, + 0, 1, and

Xo — Uy (30 = to, J(x0)) _ x| — 1 (xo, J(x0)) _
“ Y n + onu + M ” Bto ”xO"

1 1
= (=1 gl + ol = 5ol =0,

0 Xo

" Bro
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a contradiction. Hence, x ¢ F(t, x) on [0, 1] x dB(0, ry), and so

deg (I — BT, B(0, ry), 0) = deg (I — B(0,r,),0) = 0.
Thus, deg (I — BT — f, B(0, r;), 0) + 0 implying that for each B, — 1 with e
€ (Bo» 1), there exists x, € B(0, r,) such that f e x, — B, T(x,). Let u, € T(x,) be such

that f = x, — B, Then x, —u, = f + (B, — 1) u, > f as k —> oo and by con-
dition (+ +), there exists x in X such that fe x — T(x). 4

Remark 2.3. From the proof of Theorem 2.3 we see that condition (19) can be
replaced by conditions (20) and (21).

Under some different growth conditions, we have (see [34] for the single-valued
case and the references there in).

Theorem 2.4. Let T: X — CK(X) be u.s.c. and 1 — ¢-contractive. Suppose that
for some R > 0, either T is odd on X \ B(0, R) or

(22) Ax¢ T(x) forall |x| 2R, 2>1,

and that to each f in X there corresponds r; = R and y > 0 such that

(23) lx =y —tf| 2y forall yeT(x) with |x|=r;, te[0,1].
Then, if 1 — T satisfies condition (+ +), the equation fex — T(x) is solvable
for each f in X.

Proof. Let f in X be fixed and observe that by the boundedness of T there exists
Bo € (0, 1) such that for each e (B,, 1)

|x =By —tf| 292 for yeT(x), |x|=r;, te[0,1].
Since for each Q < B(0, r/), the homotopy H : [0, 1] x B(0, r;) - CK(X) given
by Hy(t, x) = B T(x) + tf is such that:
HH[0. 1] x 0) S (B T(0) + ] 1[0,11})  6(BT(D) < £ 4(2).
The homotopy theorem ([33]) implies
deg (I — BT — f, B(0,7),0) = deg(I — T, B(0,7,),0).

If T is odd, the last degree is nonzero, while if T satisfies (22) it is again nonzero
which can be easily seen by using the homotopy F(t, x) = Bt T(x). Hence, for each
B (Bo, 1) with B, — 1 there exists x, € B(0, ;) such that fe x, — B, T(x;). This
and condition (+ -+) imply that f € x — T(x) for some x in X. 4

Remark 2.4. When T is ¢-condensing, condition (23) of Theorem 2.4 can be
weaken to
tf¢(I — T)(aB(0, r;)) foreach te[0,1].

The usefulness of this observation can be seen from the following easy application
of Theorem 2.4.
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Theorem 2.5. Let A : D(A) = X — Y be a closed linear mapping with the closed
range and X = N(A) @ U for some closed subspace U of X. Let T:X — CK(Y)
be such that R(T) = R(A) and either T is odd or for some R > 0

(24) AA(x)¢ T(x) for |x]|ZR in D(A) AU, A>1.
Suppose that either one of the following conditions holds:

(i) A — T satisfies condition (+) on D(A)nU and I — A{'T:U - CK(U)
is u.s.c. and ¢-condensing, where A7' is the inverse of the restriction A,
of A to D(A) nU;

(i) I — A7'T:U - CK(U) is u.s.c., 1 — ¢-contractive and satisfies condition
(++) on U and for each f e R(A) there exists an r; = R such that for some
y > 0. ‘

(25) [x =4 0) =147 (Dl 2y for yeT(v),
[x|| =r;, in DA)AU, te[0,1].

Then the equation fe A(x) — T(x) is solvable if and only if fe N(43)* (=R(4)),
where A§ is as defined in Section 1.

Proof. (i) Let fe N(Ag)*". By condition (+) there exists an r, = R such that
tA7'(f) ¢ (I — A7) (9B(0, r,)) for all € [0, 1]. Moreover, condition (24) implies
that

ix¢ AT T(x) for |x|| 2R in U, A>1.

Hence, by Theorem 2.4 and Remark 2.4 the equation A7'(f)ex — A" T(x) is
solvable in U, and therefore, so is f € A(x) — T(x).

Conversely, if f e A(x) — T(x) is solvable, then f e N(45)* = R(A) since R(T) =
[ R(A).

(i) Since I — A 'T satisfies all the assumptions of Theorem 2.4, the conclusion
follows as in part (i). 5

Remark 2.5. Since 4 is not continuous, condition (+) for A — T does not imply
(25). However, conditions (24) and (25) of Theorem 2.5 are implied by

lim sup lﬂj < 1/]|47|

Ixl~o | x]
xeU

and consequently, Theorem 2.5 (ii) with T singlevalued extends the corresponding
results of Kachurovsky [12] and Petryshyn [32] for A7 'T compact and 1 — ¢-con-
tractive, respectively. Moreover, in view of Theorem 2.1, the last condition can be
weaken in a manner as indicated in Remark 1.3 (with F ¢-condensing). For bijective A
and singlevalued T such that A™!T or TA™! is k — ¢-contractive, k < 1, Theorem
2.5 has been previously proven by Fuéik [4] (k = 0), Webb [40] and Petryshyn-
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Fitzpatrick [34] under various stronger additional assumptions which include the
oddness of T or the boundedness of the set of solutions of A(x) — ¢ T(x) = 0 for all
te [0, 1], etc. For nonlinear and noninjective 4 with TA™! 1-ball-contractive, see
Milojevié-Petryshyn [23, 24]. For other assumptions on 4 and T see, e.g., Fugik [5],
Fugik-Kudera-Nedas [7] and the references therin.

3. CONDENSING PERTURBATIONS
OF ACCRETIVE AND PSEUDO-CONTRACTIVE MAPPINGS

The results of the previous sections will now be used to establish Fredholm alter-
natives and other surjectivity type of results for condensing like perturbations of
accretive and pseudo-contractive like maps. The fixed point type and some surjectivity
result for such maps have been proven in [19, 22] under different boundary condi-
tions; for bifurcation theory see [36, 37].

Consider the equation

(26) feAx — Bx + Nx (xe D(A), fe H),
where H is a real n,-Hilbert space and the mappings A, B and N satisfy:

(A1) A is a densily defined, positive definite, self-adjoint linear mapping whose
essential spectrum o (A) is bounded below, i.e. theie is a number y > 0 such that
for each ¢ > 0, 6(A) N (— o0, y — &) consists of a nonempty set of isolated eigen-
values, each of finite multiplicity, with

Ao < A <. <A

(A2) B:H — CK(H) is a demicontinuous k,-ball-contractive mapping with
kiy ' <L

(A3) Let H, be the completion of D(A) in the metric [x, y] = (Ax, y) and |x||, =
= (Ax, x)'/* for all x, y e D(A) and N : Hy —» 2" be of the form N = N, + N,,
where N, : Hy, — H is continuous and monotone and N, : H — CK(H) is demiclosed
and compact.

By assumption (A1) A4 has a bounded inverse A~' : H - H which is self-adjoint,
positive and y~!-ball-contractive. Furthermore, the positive self-adjoint square
root A'/2 of A is a linear homeomorphism of H, = D(4'/?) with [x|, = [4"*x|
onto H and the positive square root 4™'2 = (47")"? =(4"?)"' :H > H is
continuous and y~'/?-ball-contractive (cf. [36]). Hence, the mapping L =
= A'?BA™'? : H » CK(H) is k-ball-contractive with k = k;y”' and by (A3),
M = A"'2NA™Y?:H - 2" is the sum of the monotone M, = A~'>N 4~1/?
and the compact mapping M, = A™Y/2N,471/2,

An element x € D(4) is a solution of f € Ax — Bx + Nxifandif onlyif y = 4'/?x
and y is a solution of

(27) A"V (f)ey — Ly + My (yeH, A"'*(f)eH).
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We also observe that if I'y = {4'/?X,, P,}, X, = D(A), is a projectionally complete
scheme for H, then for each approximate solution x, of (26) obtained by the Galerkin
method, the vector y, = A'/’x, satisfies P,4A~'*(f)ey, — P,Ly, + P,My, and
conversely and therefore Equation (26) is approximation solvable w.r.t. I' =
= {X,, P,} for H, if and only if Equation (27) is approximation solvable w.r.t. I’
for H. We shall discuss the (approximation) solvability of Eq. (27) w.r.t. any projec-
tionally complete scheme I' = {X,, P,} with X, = X, ., which then implies the
solvability of Eq. (26).

Theorem 3.1. Under the assumptions (A1)—(A3), Equation (26) is solvable
in D(A) for each f in H if either one of the following conditions holds:
(i) N, is odd on H\B(0, r) for some r > 0 and
lim sup Lli{ﬁ/[ﬁl <1;
llxll = oo x|

(ii) B is odd and 1-homogeneous (i.e. B(tx) = tB(x) for all t > 0 and xe H),
Ax ¢ Bx for 0 + x e D(4) and

. Mxl
lim sup <c

ixi-e x|
with ¢ sufficiently small.
(i) lim sup |Ex — Mx| “' ”M" <1.
lIx|f =0 X

Proof. (i) We may assume that M,(0) = 0. Since A4, =1 + M, is strongly
monotone, it is 4 proper, odd and satisfies |P,4,x| 2 |x|| for xe X,, n 2 1. Since
T=1—- L+ M is also A-proper by Example A4, 4, and T satisfy all the hypotheses
of Theorem A.

(i) Since L is k-ball-contractive, k < 1, A, =1 — Lis A proper, odd, 1-homo-
geneous and 0 € 4,(x) = x — L(x) implies x = 0 since 4x ¢ Bx for 0 + x € D(A).
By Lemma 2.1 in [20], there exists a constant ¢, > 0 such that for large n

[P.(¥)| 2 ¢s]|x] for yed(x), xeX,.
Hence, A, and T = I — L+ M satisfy all the hypotheses of Theorem A.

(iii) This part is a direct consequence of Theorem 1.2.
Let us observe that by the properties of 4'/2, the growth condition (i) in Theorem
3.1 holds if

lim sup [By = Nay| < 1|42 .
Iyllo= e [¥lo

Similar observations hold for (ii) and (iii). As observed before, Eq. (26) is feebly
approximation solvable under the conditions of Theorem 3.1 provided I =
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= {A'?X,, P,}. However, just the solvability of Eq. (26) holds say, in part (i)
without the oddness of N, as established in Theorem 3.3 (cf. also Theorem 3.4).

Theorem 3.2. Let N be single valued in Theorem 3.1 and such that for some
c-strongly monotone continuous linear mapping G : H - H and a demicontinuous
linear koy-ball-contractive mapping F : H — H with ky < min {c, ¢}, and

[P.G*x|| = ¢;||x| for xeX,,
we have
x—Lx+Mx—Gx—Fx[<

m

lim sup |

[EEE Il
for some sufficiently small m. Then, either N(G + F) = {0}, in which case Equation
(26) is solvable in D(A) for each f in H, or N(G + F) # {0}. In the latter case,
assuming additionally that

R(I = L+ M) = N(G* + F*)* (=R(G + F))

or equivalently,
R(A — B + N) = R(4'*G + A'*F),

Equation (26) is solvable if and only if A~'* (f) e N(F* + G*)*.

Proof. The mapping F, = M, — L is k-ball-condensing and T'=1 + M, is
strongly monotone, and therefore, F, G, T and F, satisfy all the assumptions of
Corollary 1.1 (cf. Remark 1.1).

Corollary 3.1. Let B and N be singlevalued, B be linear with |B| max {1,y™'} < 1

and
lim sup M/Ix_” <m

== [|x]

with m sufficiently small. Then, either N(A — B) = {0}, in which case Equation (26)
is solvable in D(A) for each f in H or N(A — B) + {0}. In the latter case, assuming
additionally that either R(I — L+ M) < N(I — L*)* = [A'2N(4 — B*)]* or
R(N) = R(A — B), Equation (26) is solvable if and only if fe[N(4 — B*)]*,
where N(A — B*) denotes the null space of A — B*.

Proof. We shall show that the mappings G =1, F = —L, A, Land M satisfy all
the hypotheses of Theorem 3.2. Since 4'/* is a linear homeomorphism, N(I — L) =
= {0} if and only if N(4 — B) = {0} and u € N(I — L*)* if and only if (u, 41/?y) =
= Oforall y e N(4 — B*) by the self-adjointness of A~'/2, Next, if R(N) = R(4 — B),
then R(I — L+ M) = N(I — L*)* = R(I — L). Indeed, for each xe H,, there
exists y € H, such that N(x) = Ay — By. Setu = A'2x and v = A*y. Thenu, ve
€H and NA "%y = A4'?v — BA™"?v or, A7V2NA 12y = p — A~12BA~ /2,
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ie. Mu = (I — L)v. Hence, for each ue H there exists ve H such that Mu =
= (I — L)v, i.e. R(M) = R(I — L) and therefore R(I — L + M) = R(I — L). The
conclusions now follow from Theorem 3.2. 4

In a similar fashion, one proves (taking G =1 + M, F = 0).

Corollary 3.2. Let N be singlevalued and N linear, continuous and (Nx, x) = 0
for xe Hy and

lim sup |£‘ﬁ <m
e~ | x]|

with m sufficiently small. Then, either N(A + N) = {0}, in which case Equation
(26) is solvable in D(A) for each f in H or N(A + N) =% {0}. In the latter case,
assuming additionally that either R(I — L+ M) < N(I + M*)* = [A'?N(A +
+ N*)]* (=R(I + M)) or R(B) = R(4 + N), Equation (26) is solvable if and only
if fe[N(4 + N*)]*.

For treating the case of k — ¢-contractions, where ¢ is either the ball or set-
measure of noncompactness, we introduce

(A2") B:H — CK(H) is an upper semicontinuous k, — ¢-contraction with
ky ' <1

Theorem 3.3. Let H be a Hilbert space and let the assumptions (A1), (A2') and
(A3) hold and
lim sup |Lx — Myx| _
x> ]
Then Equation (26) is solvable for each f in H.

Proof. By the previous discussion, we need show the solvability of he x — Lx +
+ Mx for each h e H. Since M, is monotone,

[x + Myx —y = My| z[x-y|, x,yeH,
and consequently, the inverse (I + M,)™" exists [25] with
|+ M)t u—(I+ M) o = |u—-v| for u,veH

lim sup |(I + Ml)'”1 (“Lx - sz)l < lim sup H‘%ﬁyz_xl <1.
x|l = X |lx]| =0 X

and

Since (I + M,)™' (L — M,)is k;y~! — ¢-contractive, by Theorem 2.4 the equation
gex — (I + M;)™" (L — M,) x is solvable for each g € H, and therefore, so is the
equation he x — Lx + Mx for each he H. ,

In a similar fashion, using Theorems 2.2 and 2.4, we can prove
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Theorem 3.4. Let H be a Hilbert space and the assumptions (A1) and (A2') hold.
Suppose that M is k, — ¢-contractive and that either one of the following con-
ditions holds:

(i) N is odd and 1-homogeneous, Ax ¢ —Nx for 0 # x e D(A), k,y™' < 1 and
lim sup M <c
== x|
with ¢ sufficiently small;
(ii) (ky + k3)y™' <1 and limsup l-lix”j”"f <1.
[ x|} = X
Then Equation (26) is solvable in D(A) for each f in H.
Proof. (i) By the properties of —M and Lemma 1.1 in [18], there exists a constant
¢, > 0 such that ||x + y| 2 ¢,|x| for all y e M(x) and x € H. Hence, since —M

and L — M satisfy all the assumptions of Theorem 2.2, the theorem is valid in this
case. We add that the roles of M and L can be interchanged in this part.

(ii) This part follows immediately from Theorem 2.4.

Theorem 3.5. Suppose that (A1) and (A2') hold -and that N is linear and con-
tinuous with (k; + |M|)y~"' < 1. Suppose that

lim sup I—Iﬁl <

<k
== || ’

with ko sufficiently small. Then, either N(A + N) = {0} in which case Equation
(26) is solvable in D(A) for each f in H, or N(A + N) # {0}. In the latter case,
assuming additionally that either

R(I = L+ M) < N(I + M¥)* = [4'2N(4 + N*)]*
or R(B) = R(A + N), Equation (26) is solvable if and only if fe [N(A + N*)]*.

Proof. The theorem will follow from Theorem 2.1 if we could show that — M
and T = L — M satisfy its assumptions. Clearly,

lim sup w < lim sup M <k,
lx~ oo [l = x|
and N(I + M) = {0} if and only if N(4 + N) = {0}. Since 4'/? is a linear homeo-
morphism, and A™'/? is self-adjoint, it follows that N(I + M*)*=[A'>*N(A+N*)]*
and that R(B) = R(A + N) implies R(I — L+ M) = R(I + M) = N(I + M*)*.
Finally, as an application of Theorem 2.3, we have
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Theorem 3.6. Suppose that (A1) and (A2’) hold and that N is linear and con-
tinuous with (k, + |M|)y™" < 1. Then, if T=1 — L+ M and

ull + (l’i) - as |x| > o foreach ueT(x)

Equation (26) is solvable for each f in H.

Let us now look at some approximation solvability results involving condensing
like perturbations of a-stable, c-accretive and strongly pseudo-contractive mappings.
We shall just illustrate some applications of Theorems 1.2 and 1.3.

Theorem 3.7. Let X be a n,-Banach space with a projectionally complete scheme
r={X,P,}, T:X - X continuous, and a:stable and F:X — CK(X) demi-
continuous and k-ball-contractive with k < ¢ or ball-condensing if ¢ = 1.
Suppose that

. Ix — Tx — Fx
lim sup
sl Il

Then the equation fe T(x) + F(x) is feebly approximation-solvable for each f
inX.

Proof. By Example A,I — (I — T — F) = T + F is A-proper and the conclusion
follows by Theorem 1.2.

Theorem 3.8. Let X and I' be as in Theorem 3.7, T: X — X continuous and
c-accretive and F : X — CK(X) demicontinuous and k-ball-contractive. Suppose
that either F and T are odd or

(28) for some R >0, ix¢(I — T— F)(x) forall |x| ZR and 2>1.

(a) If k < c or F is ball-condensing if ¢ = 1 and to each f in X there corresponds
ry = R such that

(29) o ¢(T+ F)(eB(0,ry), te[0,1], theequation fe T(x)+ F(x)
is feebly approximation solvable for each f in X .
(b) If k = ¢, with ¢ 2 0, T + F satisfies condition (+ +) and for some y > 0.
(30) |Tx + u—tf| 2y forall ueF(x), |x|=r,, te[0,1],
then the equation fe T(x) + F(x) is solvable for each f in X .
Proof. (a) By Example A, for each « 2 0,
Q+@)I—(I-~T—F)=al + T+F
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is A-proper since k < ¢ + o and conditions (10) and (12) of Theorem 1.3 (with
A = I) hold. Hence, the conclusion follows by Theorem 1.3 part (i).

(b) In a similar fashion as in part (a), the conclusion now follows from Theorem
1.3 part (ii).

For each pair x, y € X, define (x, y)- = inf {(x, w) | we J(y)}, where J is the
normalized duality mapping.

Definition 3.1. A mapping T: X — X is said to be k-strongly pseudo-contractive
if for some k < 1 ([1]).
(Tx — Ty, x — y)- 2 k|x —y|* (x,yeX).
In view of Theorem 3.8 and the fact that T=1 — A is (1 — k)-accretive whenever A

is k-strongly pseudo-contractive, we have

Theorem 3.9. Let X and I' be as in Theorem 3.7, T:X — X continuous and
k-strongly pseudo-contractive and F : X — CK(X) demicontinuous and k,-ball-
contractive. Suppose that either F and T are odd or for some R > 0

Ix¢Tx + Fx forall |x| =R and A>1.

(@) If k; <1 — k or F is ball-condensing if k =0 and to each f in X there
corresponds rp = R such that

tf¢(I — T— F)(0B(O,r;), te0,1],
then the equation fe x — T(x) — F(x) is feebly approximation-solvable for each f
in X.
() If ky =1 —k with k =1, I — T — F satisfies condition (++) and for
some y > 0 i
[x = Tx —u —tf| 2y forall ueF(x), |x|=r,,

te [0, 1], then the equation f e x — T(x) — F(x) is solvable for each f in X.

4. APPROXIMATION SOLVABILITY OF INTEGRAL
AND DIFFERENTIAL EQUATIONS

In this section we apply our Fredholm alternatives and the results of Section 3 to
establishing some approximation solvability results for contingent integral equations
and for generalized BVP for nonlinear odinary differential equations on bounded
and unbounded domains.

1. Contingent integral equations. Let Q be a bounded domainin R", F: Q x R" —»
— BK(R") and K(t,s) be a matrix of dimension n, ie., K:Q x Q — R". For
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x : Q - R" we define for te Q
I K(t, s) F(s, x(s)) ds = {y(1) =f K(t, s) f(s) ds | y:0—>R"
Q Q

is measurable and f(s) € F(s, x(s)) a. e., f measurable}.
For he Ly(Q) = L,(Q, R"), consider the contingent integral equation

(1) “(t) e J () Fs,x9) ds 4 ) (10).

Assumption (A) (1) F(t, x) satisfies Caratheodory conditions:

(i) F(t, x) is measurable in t for each fixed x € R" (i.e., {te Q | F(t,x)n A £ 0}
is measurable for each closed A = R"), and (i) F(t, x) is closed (i.e., if X; = x,,
Vi = Yo, yi€ F(t, x;), then y, € F(1, x,), te Q fixed.)

(2) For AeR,

sup |Ax — y| £ Blx| + X si(s) [x|* " + m(s),
yeF(s,x) k=1

where me L,(Q, R), si(s)€ Ly (Q, R), 0 < p, < 1 and B is a sufficiently small
constant.

For each x € L,(Q), define #(x) = {f e L,(Q) | f(s) € F(s, x(s)) a.e.}. By Assump-
tion (A), #(x) # 0 (cf. [3,15]), bounded, closed and convex subset of L,(Q) and
and & : L,(Q) » BK(L,(Q)) is closed. Define 4 : L,(Q) - L,(Q) by A x(t) =
= 1 [o K(t, s) x(s) ds and assume that K(t, s) € L,(Q x Q, R"™). Since 4 is compact,
r=dimN(I — A) < o0 and let {z,,...,z,} = L,(Q) be a basis of the null space
N(I — A*), i.e., they are linearly independent and

(32) zi(t) — A‘[ K(s,t)z{s)ds =0 (teQ, i=1,...,r).
0
Assumption (B). Assume that for each f € F(x) with x € L,(Q),

L(LK(t,s)[f(S)—/lx(s)]ds) ()di=0, L<i<r.

Set T = (1/4) AZ. Since (T — A) x(t) = {[ K(¢, s) [f(s) — A x(5)] ds |fe F(x)},
R(T — 4) = N(I — A*)* = R(I — A) by Assumption (B). Moreover, T: L,(Q) -
— CK(L,(Q)) is compact and closed and Equation (31) is equivalent to the operator
equation

(33) hex — T(x) (xeLy(Q)).
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Theorem 4.1. Suppose that Assumption (A) holds.
(a) If the equation

x(1) — AIQK(S, 1)x(s)ds =0

has a unique zero solution, then Equation (31) is feebly approximation solvable
w.r.t. any projectionally complete scheme T'y for (L,, L,) for each h e Ly(Q).

(b) If N(I — A) + {0}, Assumption (B) holds and {z,, ..., z} satisfy condition
(31), then Equation (31) is feebly approximation solvable w.r.t. Ty for a given
he L,(Q) if and only if

(©) Igh(s) zfs)ds =0 (i=1,2,...,r).

Proof. Since L,(Q) is a separable Hilbert space, there exists a projectionally
complete scheme I'y = {E,, V,; E,, P,} for (L,, L,), where ¥, is the identity injection
of E, into L,. Moreover, since A is a compact mapping, I — A4 : L,(Q) —» L,(Q) is
A-proper with respect to I'y. Since T:L,(Q) - CK(L,) is compact and closed,
I — T is A-proper w.r.t. I'y (see [17]) and P,(I — T):B(0,r) n E, > CK(E,) is
upper semi-continuous for each r > 0. Next, observing that Equation (31) is equi-
valent to Equation (33), the conclusions of our theorem will follow from Theorem 1.1
provided we show that I — 4 and I — T satisfy all the assumption of that theorem.
In view of the above discussion, we need only show that condition (5) of Theorem 1.1
holds and, in case (b), that dim N(I — 4) = codim R( — 4) and R(I — T) =
= N(I — A*)*. By Assumption (A), we get

(I = T)x, (I —A)x)

lim sup < lim sup A1), A)) <
llxll =0 x| llx]| = [Ix]|

<tz ([ (000 - pore) ) s

< lim sup ﬁ. K{BJx| + MY x| ~7 + N} = kB,
lIx[[=e0 ||X k=1

where

Pi/2
k* = J’ sz(t, s)dsdr, M = max {J |sits)] >/ ds}
eJe l=izn (Jo

and N = ||m||. Thus, since B is sufficiently small we have that kf < k, and con-
dition (5) holds. In case (b), since 4 is a linear compact mapping, we have that
dim N(I — A) = codim R(I — A). To show that R(I — T) = N(I — A*)*, we first
observe that | — T=1— A+ (A — T) and R(I — A) = N(I — A*)* and then
that R(A — T) = N(I — A*)* by Assumption (B).
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In case when all mappings are singlevalued, the existence assertions of Theorem
4.1 have been proven by Kachurovski [12] under a more restrictive Assumption (A2)
which implies that | Tx — Ax|/|x|| - 0 as |x| - oo.

2. Variational BVP for nonlinear ordinary differential equations. Consider formal
ordinary differential operators

t(a) = $ (=1)' 2 (4(3) ()
and

2(u) =:'=i:(— 1y 18,5 (o) . )]

For meN, pe[l, ] we consider the Sobolev spaces W,'(a, b) = {u:Due
€ L(a, b) for all 1 < i < m} with the norm [[u],, = (Y [u®|2,)"/". Let Wy(a, b)
i=1

be the closed subspace of W)'(a, b) defined by Wy'(a, b) = {u € Wy'(a, b) : u(a) = ...
ceo =u""(a) = u(b) = ... = uV (b) = 0}. Let ¥ be a closed subspace of the
Hilbert space Wj'(a, b) containing Wj'(a, b) as a closed subspace, i.e. W3'(a, b) =
< V< W)a, b).

Consider the following formal differential equation

(34 SA(u) — B(u)=f, feLya,b).
Our conditions on 4;; and B; are given by
Assumption (D) (1) Suppose that A;;€ L,(a,b) for i,j=0,...,m and that

there exists a constant Co > 0 such that Apm(x) = C, for almost all x  (a, b).

(2) The function B(x, &, ..., En—y) : [a, b] x R™ — R is continuous for each
j=0,...,m—1.

Let ¢ € Wy'(a, b) and h e V be such that the scalar product in W;'(a, b), (h, u) = 0
for each u € Wj(a, b).

Definition 4.1. A function u € V is said to be a weak solution of the boundary
value problem {V, h, ¢} for differential equation (34) if for each v e V the following
indentity holds:

5 "4y (x) @) + $9() 09(x) dx +

i,j=0 ),

+’:§_; J':Bj(x; u(x) + ¢(x), ..., u™ V(x) + ¢ V(x)) vV(x) dx =
= [[769 s x4 (1
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Now, introduce in V the inner product as follows
b b
(u, v)y =J Apm(x) u™(x) v(x) dx + J u(x) v(x) dx

Then the norm [uf), = (u, u)}/? is equivalent to the norm |ul|,, , O V.
Define the operator L: V — V by

(Lu, v)y = Z ‘j(x) u(x) v(x)dx, u,vels
i,j=0

and B: V- V by

(Bu, v)y =:Z—‘; bej(x; u(x) + ¢(x), ..., u™ " V(x) + d)(’"‘”(x)) vU)(x) dx +

b
+ (h, V)w,m — Z ij(x) ¢V(x) v(x)dx, forall #,veV.

i,j=0

Then, as shown in Fudik [6], the operator A = I — L is linear continuous and
compact and B : ¥ — V is continuous and compact. Moreover, the eXistence of a weak
solution to the boundary value problem (V, h, ¢) for equation (34) is equivalent to
the solvability of the operator equation

(35) Lu — Bu=u— Au — Bu = w,, (ueV)

where w, e V is such that [} f(x) v(x) dx = (w,, v), for all v e V. By the generalized
boundary value problem (¥, h, $) for Equation (34) we shall mean a problem of
finding its weak solution. Since 4 is a compact linear operator, the dimension of the
null space dim N(I — 4) = r < oo and let {¢,, ..., ¢,} = V be a basis of the null
space N(I — 4*).

Assumption (E) Suppose that for each 1 < i < r, (qbi, Bu), = 0 for each ueV.

Since X; = N(I — A) and Y, = N(I — A4*) are finite:dimensional subspaces of
the Hilbert space ¥, we know that

V=X, ®X,=Y,®Y with X,=R(I-4*) and Y, = R(I — 4).

Assumption (F) There exist constants ¢, > 0, ¢, > O and 0 £ 6 <1 such that
foreach0<j<m-—1

m-—1
|Bj(x; Eosenns é,,,._l)| S+ C‘(‘Z()"fiiz)m
=

with ¢, small enough if 6 = 1.
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Theorem 4.2. Suppose that Assumptions (D) and (F) hold.

(i) If N(I — A) = {0}, then the generalized boundary value problem (V, h, ¢)
Jor Equation (34) is feebly approximation-solvable with respect to a projectionally
complete scheme Iy for the pair (V, V) for each f e L,(a, b).

(i) If N(I — A) + {0} and Assumption (E) holds, then the generalized boundary
value problem (V, h, ¢) for Equation (34) is feebly approximation-solvable for
a given f e L,(a, b) if and only if

b
©) J f;dx =0 forall i=1,...,r.

Proof. Since Vis a separable Hilbert space, there exists a projectionally complete
scheme I’y for the pair (V, V). Since A and B are compact, the mappings / — A and
I - A— B:V- Vare A-proper with respect to I'y. Next, by Assumption (F) we
get for each u,ve V

I(Bu, u)y| é':;: jb‘Bj(x; u(x) + ¢(x), ..., u" " x) + qb('"-l)(x))I .

a

. lv(j)(x)l dx + l(h’ U)wzm| + i J“’Aij(x) $D(x) v(x) dx| <

i,j=0 a
_S_jz—:: J.b(co + cl(y:g(:lu“’(x) + qS“’(x)[z)"’2 |v“"(x)| dx +
+ I(h, U)wz.,.l + I(Lqﬁ, v)y|

[Bul _ 1 1(Bu. )]
lulv Jully ovo ollv

for all large ||u|), with & < k; since ¢, is sufficiently small when & = 1. Thus,

and so

¢

IIA

o™

lim sup L2 <

lullv=o |ul
when 6 = 1 and ¢ = 0 when 6 < 1. This shows that the mappings I — A and
I — A — B satisfy condition (5) of Theorem 1.1. Next, we show in case (b) that
R(I — A — B) = N(I — A*)* = R(I — A). To that end, we need only show that
R(B) = N(I — A*)*, i.e. that (¢, Bu) = 0 for each ueV and i = 1,...,r. But,
this follows from Assumption (E). Finally, since A is compact, dim N(I — 4) =
= codim R(I — A), and condition (C') is equivalent to w; e R(I — A), the theorem
follows from Theorem 1.1. 4

The existential assertion of Theorem 4.2. (i) was proved in Fugik [6].

3. BVP for nolinear second-order ordinary differential equations on unbounded
domain. Let us now briefly indicate how the results of Section 3 can be applied to
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some boundary value problems on unbounded domain. The global bifurcation
phenomenon for such problems has been studied by many authors (see [36] and the
references therein).

Let Q = (0, w), L, = L,(Q), W' = W;(Q) and C3(Q) be the family of infinitely
differentiable functions with compact support in Q and W be the completion of
C3(0) in Wy

Consider the boundary value problem
(36) ~(p(x)u) + a(x)u — f(x,u) + g(x,u) = h(x) (x € Q, u(0) = 0),
where € L,. Suppose that p and g satisfy the usual conditions ([cf. 36]):

(a;) p: [0, ) > R is continuous, pe C*(Q), p' is bounded and 0 < P, < p(x) <
< P, forall x = 0.

(az) g:[0,0) > R is continuous with liminfg(x) =y >0 and 0< Q, <
< g(x) £ Q, forall x = 0. e

Conditions on f and g depend on the abstract results of Section 3 to be used. For
later use we state some of them.

(by) £:[0,0) x R—> R is continuous, |f(x,¢&,) — f(x,&)| < k|¢, = & for
all &, &, € R and some k > 0 with f(x,0) € L,.

Suppose that g(x, u) = g,(x, u) + g,(x, u) with

(b2) 94 : [0, ©) x R — R is continuous and

(91(x. &) = g4(x, &) (6, — &) 2 0 forall &, ¢ €eR.
(bs) g,:[0, 0) x R = R is continuous and the mapping N, : Wy — L, given
by N,(u) (x) = ga(x, u(x)) is continuous and compact.
(ba) |91(X, f)l < a(x) + oc|5|x for all x =0, all ¢,,¢,eR, and some ae L,,
a > 0and Be(0,1].

Define 4,(u) (x) = —(p(x) u’)’ + q(x) u(x) for u € D(4,) = C5(Q). By conditions
(a,) and (a,) and the results in [36], 4, has a unique self-adjoint extenion, call it 4,
in L, with D(4) = W} n W}, A has a bounded inverse A~! : L, — L, which is self-
adjoint, positive and y~!-set-contractive. Furthermore, A~ '/2:L, » L, is y~'/2-
set-contractive and 4'/? is a homeomorphism of D(A'?) = W, onto L,. As shown
in [36], each ue W, is continuous on [0, o0), u(x) —> 0 as x — o, max ‘u(x)l <

< ||ufy,> and ||u|, < |u,,, for all p = 2. Define |juf, = ||A”2u[| “Tor ue W}
and denote by H, the space W, normed by the equivalent norm

For each u : [0, ) — R, define B(u) (x) = f(x, u(x)) and N ,(u) (x) = g,(x, u(x)),
x = 0. In view of assumption (b,) we have that B : L, — L, satisfies |Bu — Bu||, <
< k|ju — v||, for all u,veL,, and therefore, is k — ¢-contractive. Moreover,
(b,) and (b,) imply that N, is continuous, bounded and monotone from L, into L,
with ||Nu, £ |af, + oc||u||” for all u in L,. Since W, is continuously imbedded
into L,, the mapping N, : W) — L, is also bounded, continuous and monotone.
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Definition 4.2. A function u € W} is called a weak solution of Equation (36) if
J {p(x) w'(x) v'(x) + q(x) u(x) v(x)} dx — J. f(x, u(x)) v(x) dx +
0 0

+ ng(x, u(x)) v(x) dx = fwh(x) v(x)dx forall ve CZ(0, ).

0 0
By the above discussion for any solution y in L, of the corresponding operator
equation
(37) y - A—I/ZBA-llzy + A—1/2NA—1/zy — A—l/Z(h)’

-1/2

the function u = A~'/?y is a weak solution of Equation (36).

Theorem 4.3. Suppose that conditions (a,), (a,), (b,), (b,) and (bs) hold. Then
Equation (37) is solvable in L, if either one of the following conditions holds:

(i) kmax {||4="*|%,y7"} <1, N, : L, » L, is continuous and bounded and

lim sup (LE P
lull~eo [

(i) f is odd and 1-homogeneous (i.e., f(x, —&) = —f(x, &) and f(x, t&) = tf(x, &)
forall£eR, t > 0and x 2 0), ky™! < 1, condition (b,) holds with o sufficiently
small if B =1 and A,(u) — f(x,u) + 0 for ue D(A4,), u + 0.

(iii) N : L, — L, is continuous and bounded, ky™"' < 1 and

|Bv — Nv|,

lim sup < 1A= .
oo~ o]0
Proof. (i) Since |[Lu|, < k|A™"?|? |u|, + |A~""?| |F(0)|,, and
lim sup “L_“—J\il’fﬂé <1,
llull a0 [lu]|

the conclusion follows from Theorem 3.3.

- (ii) Since B is odd and 1-homogeneous with Au + Bu for 0 + u € D (4),Theorem
3.1 (ii) is applicable.

(iii) Since, setting x = A4'/?v,

lim sup ME < |47 lim sup [Bo = Nof,

<1,
ull 2o (w2 1 42/20]] > 0 v)lo

Theorem 3.1 (iii) is applicable.
In a similar fashion, using Corollary 3.1, we have
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Theorem 4.4. (Fredholm alternative). Suppose that conditions (a,), (a,) and
(b,) — (bs) hold with « sufficiently small if B = 1. Let B be linear with |B| max .
A{1,y7'} < 1. Then, either N(A — B) = {0}, in which case Equation (37) is solvable
in D(A) for each h in L, or N(A — B) = {0}.In the latter case, assuming additional-
ly that R(N) = R(A — B), Equation (37) is solvable if and only if fe
e [N — B¥)]*-

In view of Corollary 3.2, a similar alternative holds when N is linear.

Note added in proof. Theorem 2.4 is valid for A-proper like mappings. Namely,
let K:X — Y* with ”Kx” — 00 as |[x|| — 0, G:X - Y bounded, (Gx, Kx) =
= ||Gx|| “Kx“ for x € X and Gx = O for Hx“ large.

Theorem. Let T: X — Y be such that |Tx| + (Tx, Kx)[|Kx| — oo as |x|| - o
and either (i) deg (uW,GV,, V, '(B(0,7),0) % 0 for all large r > 0 with p = 1
if Tis A-proper and pe (0, ) for some B small when T + uG is A-proper, or (ii)
there are K, : V,,(E,,)—» F¥* and a linear isomorphism M, : E, —» F, such that
(W, K, V,u) = (v, KV,u) for uekE, yeY and (Mu,K,V,u)> for 0+ uckE,
Then,

(a) Equation Tx = f is f.a. solvable for each f € Y if, in addition, H(t, x) = t T(x) +
+ (1 — t) Gx is an A-proper homotopy on [0, 1] x X (cf. Notices Amer. Math.
Soc. January 1977, 77T-B27, and [21]);

(b) T(X) = Y if, in addition, H,(t, x) = t T(x) + p Gx is an A-proper homotopy
at 0 on [0, 1] x X \B(0, R,) for some R, large and all pe (0, B) and T either
satisfies condition (+ +) or is pseudo A-proper (cf. Notices AMS, loc. cit. and
for details, P. S. Milojevi¢, On the solvability and continuation type results for
nonlinear equations with applications. II, to appear).

If G and T + uG are A-proper for u = 0 (u > 0 resp.) and either T is bounded or
(Tx, Kx) 2 —c|Kx| for ||x| = R, and some ¢ > 0, then H(t, x) (H,(t, x), resp.)
is A-proper on [0, 1] x X (at 0 on [0,1] x X\B(0, R), R = R, resp.); cf. the
above cited papers for details. Let us also add that an extensive study of Ax + Tx =
= f with a linear mapping A either densily defined and closed or Fredholm of index
zero can be found in the forthcoming papers of the author: “Approximation solva-
bility of some nonlinear operator equations with applications” (Proc. Intern. Symp.
on Funct. Diff. Eq. and Bifurcation, 1979, Lecture Notes in Math. Springer-Verlag,
Editor A. Ize, to appear) and “Approximation solvability results for equations in-
volving nonlinear perturbations of Fredholm mappings with applications to differen-
tial equations”, (Advances in Functional Analysis, Holomorphy and Approximation
Theory, Marcel Dekker, New York, Editor G. Zapata, to appear).
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