Previous |  Up |  Next

Article

References:
[1] N. Bourbaki: Elements de Mathématique, Livre III, Topologie Generale. Paris, Hermann, 1951.
[2] G. E. Bredon: Sheaf Theory. McGraw-Hill, New York, 1967. MR 0221500 | Zbl 0158.20505
[3] E. Čech: Topological Spaces. Prague, 1966. MR 0211373
[4] J. Dauns K. H. Hofmann: Representation of Rings by Sections. Mem. Amer. Math. Soc., 83 (1968). MR 0247487
[5] J. Dugundji: Topology. Allyn and Bacon, Boston, 1966. MR 0193606 | Zbl 0144.21501
[6] Z. Frolík: Structure Projective and Structure Inductive Presheaves. Celebrazioni archimedee del secolo XX, Simposio di topologia, 1964.
[7] A. N. Gelfand D. A. Rajkov G. E. Silov: Commutative Normed Rings. Moscow, 1960 (Russian).
[8] E. Hille, Ralph S. Phillipps: Functional Analysis and Semi-Groups. Providence, 1957.
[9] J. L. Kelley: General Topology. Van Nostrand, New York, 1955. MR 0070144 | Zbl 0066.16604
[10] G. Koethe: Topological Vector Spaces, I. New York, Springer Vig, 1969. Zbl 0179.17001
[11] G. J. Minty: On the Extension of Lipschitz, Lipschitz - Hölder Continuous, and Monotone Functions. Bulletin of the A.M.S., 76, (1970), I. DOI 10.1090/S0002-9904-1970-12466-1 | MR 0254575 | Zbl 0191.34603
[12] J. Pechanec-Drahoš: Representation of Presheaves of Semiuniformisable Spaces, and Representation of a Presheaf by the Presheaf of All Continuous Sections in its Covering Space. Czech. Math. Journal, 21 (96) (1971). MR 0487958
[13] J. Pechanec-Drahoš: Functional Separation of Inductive Limits and Representation of Presheaves by Sections, Part One, Separation Theorems for Inductive Limits of Closured Presheaves. Czech. Math. Journal, 28 (103), (1978), 525-547. MR 0506432
Partner of
EuDML logo