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FUNCTIONAL SEPARATION OF INDUCTIVE LIMITS
AND
REPRESENTATION OF PRESHEAVES BY SECTIONS
PART TWO
EMBEDDING OF PRESHEAVES INTO PRESHEAVES
OF COMPACT SPACES

JAROSLAV PECHANEC - DRAHOS, Praha
(Received June 10, 1975)

1. EMBEDDINGS IN CUBES

Given a closured presheaf & = {Z,|0.5| (A=)}, suppose that & can be embedded
into a larger one #** = {@,|r,,| CA=<)}. It means that for each o € A there is a con-
tinuous 1-1 map e, : ¥, — %, such that the following diagram is commutative for
anya, fe A, a < B:

g{uﬁ"_,grp

2.1.1) lea leﬁ
raﬂ
C—> b
If & can be embedded into some &** then by 1.1.1, there is a continuous 1-1
map e of # = lim & into ¢ = lim **. If ¢ is f.s., then so is #£. This gives us a way
how to prove the functional separatedness of #. We shall study embeddings of &

into some presheaves of compact spaces. These embeddings will be used in the last
part of the paper.

2.1.2. Definition. A. A closured family & = {Z,]e.5| (A<D} (see 0.12) is called
topological (Ty, regular, completely regular, normal, compact, ...) if Z, is topolo-
gical (Ty, regular, ...) for all a € A.

B. A hull (weak hull) of & is a pair [¢, 2], where ¢ = {%,|r,5| (A<D} is a topo-
logical inductive family and & = {e,: &, — ¥, | a€ A}, where each e, is a con-
tinuous open 1-1 map (a continuous 1-1 map) into €, such that diagram 2.1.1 is
commutative for any o, f€ 4, a < B.

Where possible, we omit the set & saying that € is the hull of &.
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Notice that e, is a homeomorphism of the topological modification m%, of &,
into €, (see 0.9, 0.15) if € is a hull of &. Thus if & is topological, then e, : Z, > €,
is a homeomorphism into %,.

C. A compact (weak compact) hull of & is a compact inductive family ¢ which
is a hull (weak hull) of .

D. Let & = {Z,]e,45| CA<>} be from an i.c. category £. We say that % is a hull
(weak hull) of & if € is a hull (weak hull) of c1 ¥ — see 0.9. (By 0.9, £ is a sub-
category of CLOS or of SEM or of PROX (see 0.5, 0.10), so every Z, is a closure
or semiuniform or proximal space (X,, 7,). We denote by cl 7, the closure generated
in X, by 7, and put ¢l & = {(X,, cl 1,) |e,5| CA=)}. Then cl & is from CLOS).

In the next lemma we collect together some well known facts and find some new
ones, which will be used later.

2.1.3. Lemma. A. Let & = (X, t) be a closure space, Q the compact unit interval,
F(X) = C(Z — Q). We define a map ex:X — Q"% as follows: If aeX then
ex(a)e QF® is the map ex(a): F(X) —» Q, which to any fe F(X) assigns the
number ex(a) f = f(a) (ex is called the evaluation map.). We put €y = (Cy, 9y) =
= QF® where 9y is the product topology in QF®,

(a) If F(X) separates points (points and points from closed sets) of %, then
ex : & — €y is 1-1 and continuous (a continuous open 1-1 map onto (ex(X), ind ),
hence a homeomorphism of mZ into €x). Further, & is a Ty-space (i.e. the points
of Z are closed).

(b) If @ = (Y, t') is another closure space, h : Z — % a map such that the dual
map h* carries F(Y) into F(X), then the dual map h** of h* carries € continuously
into €y = QFY) and this diagram is commutative:

(c) If h* carries F(Y) onto F(X), then h** is 1-1, hence a homeomorphism of €y
into €y.

(d) For fe F(X) let p, be the f-th projection of €y = Q"™ onto Q (p; is defined
Jor Y e Q" by p(¥) = ¥(f)). If aeX, ¥ = ex(a), then pex(a)) = ex(a)f =
= f(a). Thus p; - ex = f and p, is an extension of f, ¢~ from ex(X) to the whole
of €. Setting P F(X) = {p; | f e F(X)}, we have P F(X) = C(¢x — Q) and P F(X)
separates points of €. If g € F(Y) and h*(g) € F(X), then h***p, = Pys,. Thus if h*
‘carries F(Y) into (onto) F(X), then the dual map h*** of h** carries P F(Y) into
(onto) P F(X).

B. Let & =(X,t) be a closure space, fe C(X) = C(Z - R), F(X) = C(X).
Put Af = §(1 + (2/n) arctg f), A F(X) = {Af | f € F(X)}. Then 4 F(X) = C(Z - Q)
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(Q is the compact unit interval), and if F(X) distinguishes points (points from
closed sets) of %, then so does AF(X). If % = (Y,t') is another closure space,
h:% - % continuous, fe C(X), ge C(Y) then h*Ag = Af if h*g = f. Thus if
F(X) = C(X), F(Y) = C(Y) are such that h* carries F(Y) into (onto) F(X), then h*
carries A F(Y) into (onto) A F(X).

More generally, if & is an object of an i.c. category £ and fe C(¥ — R | Q),
then Af € C(cl & — Q) (see 0.9). Furthermore, let C be the field of complex numbers
and X = |%Z|, D(X) = C(% —» C|2) (D¥X) = CH& - C| Q) the set of all
(bounded) £ — morphisms between % and C (see 0.11). If fe D(X), F(X) = D(X)
then f=f, + if,, where f,,f,€C(Z). Putting Af = Af, + iAf,, AF(X)=
= {Af| fe F(X)}, we have A F(X) = D*(X) and similar statements as in the real
case hold.

C. Let X,Y,Z be three sets and f:X - Y, g:Y—>Z, h:X - Z maps, h =
= g of. Let F(X), F(Y), F(Z) be some sets of functions on X, Y, Z and f*, g*, h*
the dual maps. If f*F(Y) < F(X), g* F(Z) = F(Y), then h* F(Z) = F(X) and
h* = f* o g,

Proof. A: (a): If F(X) distinguishes points of X, then by 1.1.1, there is a Hausdorff
topology in X coarser than t, so & is T;. For the rest see [9, Ch. 4, Lemma 5, p. 116].
(b): By [9, Ch. 5, Lemma 23, p. 152], h** is continuous and into Q"™ If a € X,
we have h** o ex(a) f = ex(a) h*f = h* f(a) = f o h(a) = ey h(a) f; hence h** - ex =
= ey o h as desired.

(c): If €€ QF™, then ¢ is a map of F(X) into Q and h**(¢) = & h* e QF™,
thus h**(¢) is a map of F(Y) into Q such that if fe F(Y), then (¢h*)f = &(h*f).
Suppose @, ¥ € QFX) h**(p) = h**(y). Then ¢ o h* = Y o h* e QF™. It means
that for any fe F(Y) we have o(h*f) = y(h*f). But if g € F(X) then g = h*f for
some fe F(Y), hence ¢(g) = Y(g) for any ge F(X), thus ¢ =y and h** is 1-1.
Therefore, h** is a homeomorphism since €y is compact.

(d): The topology 9 in Cy is projectively defined by the functions from P F(X),
hence P F(X) = C(¢x — Q). If ¢, Y € €, ¢ =+ Y, then there is f € F(X) with ¢(f) *
+ Y(f). Then p(¢) = o(f) + ¥(f) = p,(), whence P F(X) separates points of €.

Further, if ¢ € QF®, g € F(Y), then (h***p,) ¢ = p;h**p = h** ¢(g) = p(h*g) =
= Djs,@, hence h***p = p,. which proves (d). We have proven A, while B and C
are clear.

2.1.4. Proposition. Let & = {%algaﬁ[ (A=)} be an inductive family from an
i.c. category L. For every o€ A let us have a set F, = C(, > R| 8) such that
the dual map 0y carries Fy into F, for all a,fe A, « < B. For a€ A let €, =
= (C,, 9,) = Q™ with the product topology 9, PF,= {p, |fe F}, # =
= {PF,|ae A}, and let ¢,: |%,| - C, be the evaluation map (see 2.1.3A). For

516



o, fe A let o} be the dual map of 0}y. We put & = {F,|ae A}, Z = {e, | ae A}.
Then

(a) If F, separates points of %, (points, and points from closed sets of cl Z,)
for all x € A, then

(2.1.5) ¥+ = ({4,

o] <A} 2

is a weak compact (compact) hull of .

(b) For o€ A we put 6%, = e,(%,)” — the 3,-closure of e(Z,). Then ¢35 carries
EX, into 8%, for o, Be A, o < P. Thus 8F = {6 |osy’| CASD} is a weak compact
(compact) hull of &.

() If 9 = {g,|ae A} is a thread through H#, then F = {f, = g,0¢,|ac A}
is a thread through &.

Proof. If a € A then €, is compact and the evaluations ¢, : cl &, - %, are con-
tinuous 1-1 (continuous open 1-1) maps [9, Ch. 4, Lemma 5, p. 116], [9, Ch. 5,
Th. 24, p. 103]. It remains to prove that &** is an inductive family, i.e. that ¢, =
= g5 o0y for a, f,y€ A, « < B < y. But this follows from 2.1.3C.

(b): Put K, = 6Z,, and for M = C, let M~ be the 9, — closure of M. We have
to prove ¢y K, = K, for o, e A, « < B. But it follows from the continuity of ¢y
as we have e;0,4(%,) = e,(Z})-

(¢): For every a € A there is f, € F, with g, = p,.. If 6, 6 € A, 0 < 6 then we get

Q::*g‘; = pg*défd =g, = pfa, pfa 0 €, = pe"aéfd o €, by 213Ad, hence fo‘ = Q:&fé.

2.1.6. Definition. The inductive family &** or &% is called the &-hull or the
&-closure of &, respectively. Each of them is a weak compact (compact) hull of &
if F, distinguishes points of &, (points, and points from closed sets of cl &, a) for all
a € A. In that case &** is called the &-weak compact (&-compact) hull of &. If &
is completely regular and Tj, F, = C(Z, — Q) for ae 4, f = {F, | ae A}, then
BZ, is the Stone-Cech compactification of &, [9, Ch. 5, p. 152], and B is called
the Stone-Cech compact hull of &.

2.1.7. Theorem. Given an i.c. category 2, a presheaf & = {Et"algaﬂ| (A}
from 2 and a set B = A such that (B<) is well ordered, assume that

(1) Either B is cofinal in (AS), or (A< is ordered, (A — B<) well ordered
and A— Bc Z.

(2) &5 is endowed with a smooth and connected separating family & =
= {F, |« e B} (see 1.1.5) such that ojy carries Fy into F, for all o, Be A, « < B.

Put & = {F, = }(1 + (2/n) arctg F,) | a € B} and denote by F the &-hull of &
(see 2.1.2D, 2.1.4A, 2.1.3B, 2.1.6). If each F, distinguishes points of Z,, then A" =
= lim 9 is functionally separated. Furthermore, ¢ = lim ¥y and ¥ = lim &
are f.s. by C(4 - R , Q). If each F, distinquishes points and points from closed
sets of cl &, then I is a compact hull of S. If there is a countable confinal set
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C < B and if o}(F;) = F, for all «, e B, a« < B then the assumption of con-
nectedness of & may be omitted.

Proof. Recall that F, = C(cl %, —» Q) — see 0.9, 2.1.3B. Let 7 = {¢, =
= (C, 9,) |oky| (B} be the & — hull of &, constructed by 2.1.4 (see 2 1.6).
Here C, = Q' and 9, is the product topology. Let e, : cl &, — &, be the evaluation
map (see 2.1.3A) and put # = {PF,|«e B}. Here PF, = {p,| g € F,}, where p,
is the g-th projection of QF= onto Q. We prove that 4 and # fulfil the conditions
of Th. 1.1.7. By 2.1.3Ad, ## is leftward smooth for so is & by 2.1.3B. Now we prove
the connectedness of 5. Given a € B so that the predecessor &« — 1 of o in (BZ)
does not exist, fe B — £(7), and a thread ¥ = {g, l y € {Ba) N B} thourgh 2,
then # = {f, =g, 0e, l 7€ {Bx) n B} is a thread through & by 2.1.4c. It follows
easily from 2.1.3B, 1.1.5B that & is fully connected for so is &. (Use the inverse map
for 3(1 + (2/x) arctg x).) Thus there is fe F, with o%f = f, for all ye (fx) N B
(here we need & to be fully connected as f need not be from B — £(¥5)). By 2.1.3A,d,
we get Q;‘: *pp= Py, = ¢, for these y. As p,e PF,, the connectedness of # is
proven. As F, = C(cl %, — Q) for all &€ B (see 0.11), we get from 2.1.3A, b that
a5 €, — @, are continuous, therefore 7 is from CLOS. Thus 7 and # satisfy the
conditions of 1.1.7, hence ¢ is f.s.

If &, : %, - #andn,: %, A are the canonical maps for « € B, then 7, are 1-1.
Indeed, if @, f€ B, « < , then the assumption (2) together with 2.1.3B and 1.1.6
implies yields that g}, carries F,; onto F,. By 2.1.3A,c¢, o}y : 6, > %, is 1-1. By
0.10 (3b), n, are 1-1. Let p, g € #, p + q. There is a € B such that there are represen-
tatives ae &, of p and be Z, of g, a + b. Setting r = ¢,(a), s = ¢,(b) we have
r%s, r,5€%, and by Th. 1.1.7 there is fe C(# — R) with fon,(s) & fon,(r)
and with fon, e PF, for all ye B(x) = {yeB|y = a}. Since {fon,|ye B(x)} is
a thread through #p,), we get from 2.1.4c that {f, = fon, 0 ¢, | y € B(«)} is a thread
through &p,,. We have ¢ = lim ¥p, since B(«) is confinal in (B<). Thus there
is ge C(# - R| ) with go &, = f, for all ye B(«). We have g(p) = g &(a) =
— @) = oo efa) = Fomls) £ Fonr) = foteo e (b) = £.(b) = g o EB) =
= g(q) as desired. The rest follows from 1.4.2. Using 1.2.5 to &, C, and to the pro-
perty P, : 05sFy = F,; if D is the set from 1.2.5 of the type w,, then by the just
proven part of 2.1.7 we get that lim &, is f.s. by C(# — R I €). Now we again use
1.4.2. The theorem is proven.

2.1.8. Remark. Th. 1.5.2 and Corollaries 1.5.4, 1.5.5 follow directly from Th. 2.1.7.

2. EMBEDDINGS IN SPACES OF MAXIMAL IDEALS

Instead of embedding a topological, completely regular, T space into a cube QF®),
where F(X) is a set of continuous functions on (X, t), we can embed Z into the
space of maximal ideals of a Banach algebra &/ of complex functions on &, or into

&
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a space of continuous linear multiplicative functionals on .7, which is the same.
We shall use this to embed a presheaf into a hull.

2.2.1. Definition. Let o7, # be complex Banach algebras. A linear map f : &/ - %@
is called multiplicative if f(x . y) = f(x). f(y) for x, y € o£. If # is the field of com-
plex numbers then f is called a multiplicative linear function. The set of all con-
tinuous maps or functions of this kind is denoted respectively by ML(s/ — %) or
F(s#). (An algebra o/ with unity is called a Banach algebra if it is a complex Banach
space where the multiplication (x, y) — x . y is a continuous map of & x & into ).

A

2.2.2. Lemma. A. Any a € &/ can be assigned a complex function & on 97(.324)
as follows: If fe F(&£), we put 4(f) = f(a). In this way, we get a set I(f) =
= {d| ae o} of functions on F (). Endowing F(sf) with the topology t, pro-
jectively defined by the functions from 9(sf), we get a compact space (F(sZ), t ).
Further, 9(/) distinguishes points and closed sets of (F (), t,). As (F (), t)
is compact, the points of #(sf) are closed. Thus 9() distinguishes points of F(sZ).

B. Let (X, t) be a closure space. Consider a Banach algebra o/x = C*((X, t) - C)
with the sup-norm |f| = sup {|f(x)| | x € X} (C is the field of complex numbers).
We say that ofy is symmetric if g € oy yields g e oy (g is the complex conjugate
of g). We can assign to any x € X an element iy(x)e F (/) as follows: If fe o x
then ix(x) f = f(x). This evaluation map iy : (X, t) > (F(x), t4,) is continuous.
It is 1-1 if o/ distinguishes points of X. Moreover, iy is open if ofy distinguishes
points and closed sets.

C.If ae sy, xeX, then doiy = a, hence the function de P(of) from the
statement A is a continuous extension of aoix' :ix(X)— C to the whole of
(F(etx) 1)

D. Let o/, % be two Banach algebras, f:%B — &/ a map. Let f* be the dual
map for f, defined for e F(s£), be B by f*y(b) = Vo f(b). Then f* carries

PN

F(sf) into F(B). If f** is the dual map for f* and be B, then f**(b) = f(b).
Therefore f** carries D(2B) into (onto) D(L) if f carries B into (onto) o/ .

Proof. A: 9(s#) distinguishes points and points from closed sets in (F(), t,,)

for t,, is projectively defined by 9(=#). The rest of A follows easily from [7, Ch. 4,
§3, Th. 4.15.2].

C: If xe X, ae &y then do ix(x) = ix(x) (a) = a(x) as desired.

B: As t,, is projectively defined by 2(x), the map iy : (X, t) = (F(#x), ty,)
is continuous iff so is do iy : (X, t) » C for any de P(ofy). But doiy =a by C,
and a: (X , t) — C is continuous. The other statements can be proven likewise as in
[9, Ch. 4, Lemma 5, p. 1.1.6].

D: If be# then beP(#) and f**(b) € 2(#). If ¢ e F() then f**(b) ¢ =
PN .
= bf*¢ = f* ¢(b) = ¢ - f(b) = f(b) (¢), Which proves D.
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2.2.3. Lemma. A: Let o/, # be two complex Banach algebras, he ML(of — B).
Then the dual map h* : (F(B), ty) - (F(), t) is continuous.

B: Let & be an object from an i.c. category 2, X = [ffl’l, o <= CHZ > C ] Q)
a symmetric Banach algebra (see 2.2.2B) with the sup-norm. Then the map m : 7 —
- C¥** = C*(F (), t4) » C) defined by m(a) = d is an isometric isomorphism
onto C*** (with the sup-norm). Further, ix(X) is dense in (F(of), ). If f € Cxx,

PR
then f o iy = f, hence C*** = (/).

C: Let & = (X, 1), ¥ = (Y, ') be two closure spaces, h:X — Y a map, sy,
oy some Banach algebras of bounded continuous complex functions on %, %
with the supnorm such that h* carries oy into oy. Then h* € ML(ofy — olx).

Proof. A: By 2.2.2A, t,, is projectively defined by the functions from 2(s).
Thus h* is continuous iff @ h* is for any de (). By 2.2.2D, do h* = h**g =

N PR
= h(a) and h(a) : (#(%), tg) — C is continuous by the definition of .

B: By [7, Ch. 1, § 8, Th. 3, p. 62], m is an isometric isomorphism onto C**¥,
If M is the t,, — closure of iy(X) and M were not the whole (&), then there
would be y e #() — M. By 2.2.2A, thre is a € 9(A) with d(y) + 0, d = 0 on M.
By 2.2.2C, d. iy = a hence a = 0. But we have 0 = ||a|| = “m(a)“ = “d” *+0 —
a contradiction. If a € & then do iy = a by 2.2.2C.If f € C*** then there is a € .o/
with f = m(a) = 4, so foiy = doiy = a€ . Further, f/oi\x= 4 = f. The rest
and C are clear.

2.2.4. Lemma. Let &, % be two closure spaces, &/, B some Banach algebras of
continuous complex bounded functions on Z,% with the sup-norm. Suppose
h:%Z — % is a map such that h* carries B into </. Then

(a) The dual map h** : (F(sf), t ) - (F(B), ty) is continuous.

(b) If h*(#) is dense in &, then h** is 1-1, hence it is a homeomorphism into

(Z(B), ta).

(c) This diagram is commutative (iy, iy are the canonical evaluations of %

and % into F (/) and F(#B) — see 2.2.2B):

h
X —

%Y
lix Iy
h**
(F (), 1) ——(F(B), 1a)

(d) If # is symmetric (see 2.2.2B) and h*(%) norm-dense in o/ then h*(#) = /.

Proof. (a): By 2.2.3C, h* € ML(# — </). Now we use 2.2.3A.

(b): If f, g e F(A), h**f = h**g, then fo h* = g o h*, hence f and g coincide
on h*(#). The continuity of f, g and the density of h*(#) yield f = g.

(c): Given xeX, be % then h** o iy(x) b = iy(x) h*(b) = b o h(x) = iy h(x) b.
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(d): I ae o then deD(/). By (b), h** : (#(s), 1) — (#(), 1) is a homeo-
morphism into (see 0.15), so there is g e C¥sx — C*(#(#), t4) — C) such that
d = h***g. By 2.23B, I =g.iye® and ] = g, By 222C,D, a=doiy=

PN
= h***g o iX = h***? o iX = h*l, ix = h*(l) as desired.

2.2.5. Lemma. A. Let F be a set of complex bounded functions on a set S. Then
there is a smallest Banach algebra o/§(F) (a symmetric Banach algebra Zy(F))
of bounded complex functions on S, with the sup-norm, which contains F; o/(F) .
.(Zs(F)) is called the (symmetric) algebraic hull of F.If all f€ F are real and F
is an algebra over R, complete in the sup-norm, then o/s(F) = {f + ig|f, g€ F},
and MS(F) is symmetric. If S is an object from an i.c. category & and F < C* =
=C*S->C | Q) then /4(F) < C* (Zy(F) = C*) if C* is a Banach algebra
(symmetric Banach algebra) with the usual sup-norm.If T, G is another pair of the
same kind as S, F and if h: S - T is a map such that h* carries G onto a norm
dense subset of F, then h* carries o/ 1(G) (Z;(G)) onto a norm dense subset of
A s(F) (Zs(F)).

B. Let ¥ = {%’a Qup <A§>} br a presheaf from an i.c. category L. Suppose
that for every o€ A we have a Banach algebra s/, = CH%,— C| &) with the
sup-norm, which separates points of &, (points, and points from closed sets of
cl &, — see 0.9) and such that o,y carries s/, into sZ, for all o, fe A, o < . For
each o€ A let &, be the set of all continuous complex multiplicative linear func-
tionals on </, with the topology t, projectively defined by the functions from
Dt,), and let i, :|Z,| > (F, 1) be the canonical evaluations. We put &% =
={d,|aed}, 2'={i,|acd}, &L ={F,1,)||A>} 2(6") =
= {2(,)| e A}. Then (&*F, Z*) is a weak compact (compact) hull of & — see
212D.If #' = {f, e 2(,) | a € A} is a thread through 2(&), (it means g}y ™ f; =
= f, for all a, e A, « £ B), then F = {a, = f, o i, | ae A} is a thread through
& — see 1.1.5.

C. Given an i.c. category &, & = {Z || CAS)} from 8, CAS) well ordered,
suppose that for every a € A we have a Banach algebra o7, < C*%, - C I L) with
the sup-norm, such that Qf,, carries o/ into o, for all o, fe A, « < . If ne 4
is such that there is no predecessor « — 1, we put G, = {fe C¥%, > C | Q) l onfe
€ s, for all ye A[«]}. Then G, is a Banach algebra (in the sup-norm). Further,
if o/, is symmetric for all o € A, then so are all the G,.

Proof. Clearly o/ 4(F) (Zs(F)) is the smallest (symmetric) subalgebra of the Banach
algebra < of all bounded complex functions on S with the sup-norm. Thus /(F).
. (Z4(F)) is the closure of #(F) in ./, where (F) is the smallest (symmetric) algebra
which contains F. It consists of all finite sums of the form 2,m; + ... + Am, (and
of all their complex conjugates) where A; are complex numbers and the m;’s are finite
products of some elements pi, ..., pi, from F, i = 1, ..., k. Using 2.2.3C to #(F),
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Z(G), h*, we get that h* e ML(¥(G) - &(F)) (recall that the sets are regarded as
topological spaces with the discrete topology — see 0.9), which together with the
continuity of addition and multiplication in & yields our statement about h*. The
rest is clear.

B. By 2.2.2A, D, (%, 1,) are compact and @5 carries #, into %, for all o, B € 4,
o < f. By 2.2.4c, the diagram 2.1.1 is commutative for £/(%), and by 2.2.2B the evalu-
ations i, are 1-1 and continuous (1-1, open and continuous), hence &(#) is a weak
compact (compact) hull of & (see 1.1.2B). If #' = {f, e 9(,) | x € A} is a thread
through 2(6”), a0, e A, a < B, then we put F = {a, = f,0i,|ae A}. From
Q:ﬂ**fﬂ =fowegeta,=f,oi,= Q:ﬂ**fﬂ ody =fpo Q:ﬁ* oiy=fpoigoQsp = 0ag0 0y =
= oiy(a;) (we have @} o i, = iz o 0, since the diagram 2.1.1 is commutative for
&PF). Thus Z is a thread through &°.

C. Given f,e G,, fe C* = C*(cl Z, - C) (see 2.2.2D), f, — f in the sup-norm,
then the continuity of ¢, on C* yields g} = ¢}.f, = ¢).f = 9, € , for all y € A[«]
(we have f, € C*). By 0.20 we get f € G, as desired. The rest is clear.

2.2.6. Definition. The family &% from 2.2.5B will be called an &* hull of &
(the index B is added to distinguish the hull of & in 2.1.6, which consists of cubes,
from that one which consists of #,. % is the Stone-Cech compactification of &
if & is Ty, completely regular and &/, = C*(%, » R) — see [7, Ch 8, § 43]).

2.2.7. Theorem. Given a presheaf & = {Z,|0.5| CAS)} from an i.c. category £
and B = A such that (BZ) is well ordered, suppose that

(1) Either B is cofinal in (ALY, or (AL is ordered, (B — A <) well ordered
and B— A c Z.

(2) For every o€ A we have a separating set F, = C*%, - C | 2) (see 0.11)
which is either a symmetric Banach algebra with the sup-norm or an algebra
of real functions over the field of real numbers, complete in the sup-norm, such that

(a) o3y carries Fy into F, for all o, fe A, o < B.

(b) o}, carries F,,, onto a norm dense subset of F,.

(c) The family & = {F,| ae B} is connected.

If s, is the symmetric algebraic hull of F, (see2.2.5A) for x e B, & = {«f, | x € B}
and if T is the &%-hull of &y (see 2.2.6) then A = lim I is f.s. Furthermore,
J =1lim ¥y and S = lim & are f.s. by C*(F — R| ). If moreover, every o,
separates points and points from closed sets of clZ, (wchich holds if so does
every F,) then 7 is a compact hull of ¥p.

If there is a countable cofinal set C in B and if g;5(F,) is norm dense in F, for any
o, pe B, a < P then the condition (2c) may be left out.

Proof. Let 7 = {(#, t,) |ok| CASD} be the &%-hull of & (see 2.1.2D, 2.2.6).
Here &, is the set of all continuous complex multiplicative linear functionals on &/,

&
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with the topology t, projectively defined by .@(.Ml) — see 2.2.5B. Let i, : I%“ a| -,
be the evaluations. We put # = 9(¢&) = {2(«,) | xe A}. By 2.2.3B and 2.2.5A,
D(A,) = C¥(F, 1) > C) — see 0.14. We shall show that J and # fulfil the
conditions of Th. 1.1.7.

By 2.2.2A, 9(«/,) separates points of &,, hence # is separating. By 2.2.4d and
2.2.5A, & is leftward smooth, thus by 2.2.2D, 5 is smooth for the «/,’s are sym-
metric. We prove the full connectedness of # (see 1.1.5A, B). Given « € B such
that « — 1 does not exist, § € B[«], and a thread ¢ = {g, € 2(«/,) |y € (Bx) "B}
through # g, 5, then # = {f, = g, o i, | y € (Bx) N B} is a thread through & 4,5
by 2.2.5B. We can easily get from 2.2.5A — as &/, = {f + ig |f, geF,} — and
from 5.1.5B, that & is fully connected, whence there is f € &, with o,f = f, for all

AN
ye{Ba) n B. By 2.2.2D, ok f = f, = o}¥*f, thus # is connected for fe 2(<,).
By 2.2.3A, all o}y : (#,, t,) > (%, t,) are continuous whence < CLOS. Thus #
and J fulfil the conditions of Th. 1.1.7, hence " = lim J is f.s.

Ifé:%,~ # and n,: F,—> A are the canonical maps for « € B then, because
all o} #, > F, are 1-1 by 2.2.4B, 2.2.5A, we get by 0.10 (3b) that , is 1-1 for all
o€ B. Let p,ge #, p + q. There is o € B such that there are representatives a € Z,
of pand be %, of q,a # b. Setting r = i,(a), s = i,(b), we have r % s,r,s€ F,,
and by Th. 1.1.7 there is fe C(# — R) with fon,(s) + fon,(r) and with fon, €
e9(o,)forallye B(e) = {ye B|y = o}. Since {f o 1, | 7 € B(«)} is a thread through
H pay We get from 2.2.5B that {f, = fon, i, |y € B(®)} is a thread through &p ).
We have # = lim 5, since B(x) is cofinal in (BZ ). Thus thereis g € C(# — R | £)
with g o &, = f, for all y € B(x). We have g(p) = g o &(a) = fi(a) = fon, o ifa) =
=fonr) & fons) =fon,oi b) =fb) = go&(b) = g(q) as desired. The rest
follows from 1.4.2. The last assertion follows from 1.2.6 because 2a, 2b, 2c yield
that # is f.s. by C(# - R | 2). Taking the condition 2a as Q in 1.2.6, we get that
lim &, = A is f.s. by C(# - R I Q) for a countable cofinal set D = B. Now 1.4.2
completes the proof.

2.2.8. Theorem. Given a presheaf & = {ﬁ”algaﬁl {AZ)} from an i.c. category 2
and B = A such that {(B<) is well ordered and that there is a countable cofinal
set C < B, suppose that the condition (1) of Th. 2.2.7 is fulfilled and (2) &y is
endowed with a vrightward smooth separating family % = {Fa cC, =
= C¥®%, > R| 2)| ae B} (see 1.1.5) such that g;3F; is norm dense in F, for all
o, feB, o < P. .

If s, is the symmetric algebraic hull of F, (see 2.2.5A) fora € B,& = {sZ, | « € B}
and T = {(F . 1,) 03| <B=S)Y} is the 8% — hull of #; (see 2.2.6) then A" = lim T
is f.s. If moreover, for every a € B the set C, is a Banach algebra with the usual
sup-norm, then ¢ =lim 5 and S = lim & are fs. by C(# > R | Q). Further,
if & is strongly separating then I is a compact hull of Fg.
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If every F, is a Banach algebra and W = {&,)o}y| (B<D} is the 4 — hull
of S then im W = A" is f.s. If G is strongly separating then W is a compact
hull of &.

Proof. Let the C,’s be Banach algebras. By 2.2.5A, & is rightward smooth
separating, &/, < C, and o)/ s is norm dense in &/, hence % and & fulfil the con-
ditions of Th. 2.2.7.

If the C,’s fail to be Banach algebras then 1.5.6B yields that # is f.s. as o** ,
is 1-1 on &, for all & € B by 2.2.4b.

If every F, is a Banach algebra, then # is a weak compact hull of & by 2.2.5B
(a compact one if ¢ is trongly separating) and the functional separatedness of "’
follows from the statement in 1.5.6B as gl ; is 1-1 on %, by 2.24b. The theorem is
proven .

If the presheaf & is endowed with a leftward smooth, connected and separating
family & = {F, [ oE A}, then the functional separatedness of lim & follows from
Th. 1.1.7. However, that theorem does not work if & is not leftward smooth. Never-
theless, if every Q:,, sends Fj into F, and every F, is a symmetric Banach algebra such
that o, F,+ is norm dense in F,, then Th. 2.2.7 can be used. (By 2.2.4d, if the F,’s
are symmetric then & is smooth so 2.1.7 and 1.1.7 work, too. Indeed, putting 28 =
= {RsA,| a e A} where Rst, = {f | fi + if,€ o,}, We see that #& is smooth,
connected and separating. From this it can be seen that in case of symmetric F,’s
2.2.7 follows from 2.1.7.) If A contains a countable cofinal subset then F,’s may be
any separating sets of functions such that gj;F s is norm-dense in F,. Then 2.2.8
works and is, in this case, a generalization of 2.2.7, 2.1.7, 1.1.7. If the set B in 2.2.8
contains no countable cofinal set, then the connectedness of & makes difficulty even
if we assume the connectedness of ¥ (see 2.2.8). Thus we can see that if B is arbitrary,
then 2.1.7 is more general than 2.2.7 for 2.2.7 follows from 2.1.7. But if there is
a countable cofinal set in B, then 2.2.7 assumes the form of 2.2.8 and 2.2.8 implies 2.1.7.

2.2.9. Theorem. Let & = {ﬁ’,|g,,,| (Ag)} be a presheaf from an i.c. category 2,
whose canonical maps &, : &, — S = lim & are 1-1 (this holds if all g, are 1-1 —
see 0.10). Suppose S is f.s. by C' = C(# > R| ). If we set C = {3(1 + (2/n).
.arctgf) | fe C'}, € = {F, = £¥C| ae A} then & is smooth and separating. If T
is the & — weak compact hull of & (see 2.1.1D, 2.1.4a), then A" = lim 7 is f.s.
If & is strongly separating (which holds if there is a strongly separating, smooth
and connected family 4 = {G, = C(%, > R|8)|ac A} for &), then T is a
compact hull of &.

Proof. As ¢, are 1-1 so the family & is separating, smooth and F, = C(cl Z, — Q)
for all o € A (see 2.1.2D, 2.1.3B; Q is the compact unit interval). Let 7 = {%,|o}7| -
.{A=)} be the & — hull of & by 2.1.6, # =1lim 7, p,q€K, p + q. There is
a € A such that there are representatives a, b € ¢, of p,q. We have a + b and a, b
are unique. Indeed, all g carry F; onto F, hence all gj5 are 1-1 (see 2.1.3A, ¢),
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which together with 0.10 (3b) gives that all the canonical maps #, : €, —» o are 1-1.
For a€ A let p; : Q7 = |€,| — Q be the f-th projection (see 2.1.3A, d) and P& =
= {PF,| a € A}, where PF, = {p,|feF,}. There is f,e F, with p,(a) + p,(b)
(see 2.1.3A,d), and fe C with &f =f,. Then F ={f, = &f|ye A(a) =
= {BeA|B = a}} is a thread through &. By 2.1.3A,d, ¢’ = {g, = p,, | y € A(2)}
is a thread through P& with g, ¢} (a) * g, 0% (b). Putting g = lim %', we have
ge C(A# — R) and g(p) + g(q) as desired.

If ¢ is strongly separating, smooth and connected, then & is strongly separating
since G, < EX¥C’ for all a e A. Indeed, if g € G, then by induction we can make
a thread # = {g,|ye A(x)} through g with g, = g. Then h = lim # € C’ and
E*h = g. The theorem is proved.

The family P& from the proof need not be connected but still we could prove that
is f.s.

We have proved in Ths. 2.1.7, 2.2.7, 2.2.8 that certain weak compact hulls of &
have f.s. inductive limits. These hulls are the &-hulls (6%-hulls) of & by certain fully
connected separating families & of sets (algebras) of functions which depend on &.
In Th. 2.2.9 we have established the existence of a hull whose inductive limit is f.s.
That hull was not made with the help of a connected family. Moreover, it depends
on .£.

2.2.10. Proposition. Given a presheaf & = {.%”alguﬁl (A<} from an i.c.catego-
ry 8, AL ) well ordered, let us consider the statements
(1) There is a leftward smooth, connected and separating family & = {F,
c C(Z, - R|2)|ae A} for &.
(2) # =1lim & is f.s.
(3) There is a weak compact hull 7 of & such that lim 7 is f.s.
If each g,y is 1-1 then we have (1) = (2) = (3).

Proof. (1) = (2) and (2) = (3) is proven in Th. 1.1.7 and in Th. 2.2.9, respectively.

3. EMBEDDINGS INTO ONE-POINT COMPACTIFICATIONS

2.3.1. Definition. Let Z = (X, ) be a locally compact (shortly 1.c.) topological
space fe C(Z — C) (C is the field of complex numbers). We say that f has limit
zero at infinity if for any ¢ > 0 there is a compact set K = X such that ‘f(x)] <e
onX — K. The set of all such functions is denoted by Zx. Let c be a complex
number. We say that f has limit ¢ at infinity if f — c € 2. We write ¢ = lim f. The
set of all functions which have a limit at infinity is denoted by £%.

2.3.2. Lemma. Let & = (X, t) be topological and locally compact. Then %3
is a symmetric Banach subalgebra of o/ = C*(& — C) with the sup-norm, which
distinguishes points and closed sets.
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Proof. Clearly #% is a symmetric subalgebra of &«. If fe &, f,e &%, fo > f
in the sup-norm, then each f, has a limit a, at infinity. By a well known theorem
concerning uniform convergence of functional sequences, there are finite lim a, = a,
limf = land a = I. Thus £ is closed in «, hence it is a Banach algebra.

Given a closed M < X, xe X — M, there is a one-point compactification of Z,
i.e. a compact topological space % = (Y,#) and a homeomorphism e:% — ¥
into & (see 0.15) such that Y — e(X) is one point p [9, Ch. 5, p. 150].
Then e(x) ¢ e(M)~, where (M)~ is the t'-closure of e(M). There is g € C¥(#% — C)
such that g = 1 on ¢(M)~, g o ¢(x) = 0. Then f = g o e distinguishes M and x. As
the family {¢(X — K) | K = X is compact} is a filter base of ¢-neighborhoods of p
[9, Ch 5, p. 156], we have lim f = g(p), hence fe £% as desired.

In this section, the words “locally compact” will be often shortened to “l.c.”.
and the word “neighborhood” to “nbd”.

2.3.3. Lemma. Let = (X, 1), ¥ = (Y, t') be l.c., h : & > ¥ a homeomorphism
into ¥, B = {h(X — K)|K = X compact}. Then & is a filter base in Y.

A. A point y € Y is a cluster point of & iff for no compact t'-nbd K, of y the set
h(X) n K, is compact (y is a cluster point of & iff ye N{M~ | M € B}, where M~
is the t'-closure of M).

B. Suppose # has no cluster point in Y. If L is a compact subset of Y, then
LN h(X) is compact.

Proof. A: Let h(X) n K, be compact for a compact '-nbd K, of y. Take a compact
t-nbd L, of y such that L, = intK,. Then L, does not intersect the set M =
= h(X — h™'(K,)),so y ¢ M~. But h~*(K,) is compact in &, hence y is not a cluster
point of #. Conversely, if y is not a cluster point of £ then there is a compact K = X
with y ¢ (h(X — K))~, hence there is a compact #-nbd K, of y such that K, n
Nh(X — K) =0, thus K, " h(X) — K, " h(K) = 0 and N = K, n h(X) = h(K).
But N is closed in h(X), h(K) is compact, thus so is N which proves A.

B: By A, every point x € L has a compact ¢"-nbd K, such that K, n h(X) is compact.
Choose a finite cover {K, | x € F} of L. Then M = U{K, | x € F} and h(X) n M is
compact, h(X) N L is closed in h(X), hence it is compact, being a subset of h(X) N M.

2.3.4. Lemma. Let (X,1),(Y,t) be lc., h:(X,t) > (Y,t') a homeomorphism
into, (R, u), (S, v) the one point compactifications of (X, t), (Y, t'). Weset R — X =
={p}, S— Y={q}. Then there is a continuous extension h:(R,u)— (S, v)
of h iff either B = {h(X — K)|K = X compact} has no cluster point in (Y, 1),
or B has a limit point in (Y, t) (we write b = lim #). Further, h(p) = q iff #
has no cluster point in Y, and h(p)€ Y iff there is b = limB € Y (in this case
b = h(p), b ¢ h(X)). If there exists h then it is 1-1.

Proof. Necessity: We may suppose X « R, Y < S. The set {X - K ] KecX
compact} is a filter base of u-nbds of p [9, Ch. 5, p. 150], hence h has a continuous
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extension h : (R, u) > (S, v) iff h(p) =limB. If h(p)e Y then lim#B = h(p)e Y.
If i(p) ¢ Y then h(p) = q and clearly # has no cluster point in (Y, t') as i(p) is the
only cluster point of & in S. This proves the necessity. Conversely, if there is b =
= lim# €Y, we may put h(p) = b, h = h on X and the map & : (R, u) > (S, v)
is continuous. If # has no cluster point in (Y, t), then g is the limit of & in (S, v).
Indeed, by 2.3.3B, if L = Y is compact, then K = L h(X) as well as h™'(K) are
compact and h(X — h™!(K)) = Y — L as desired. We put ii(p) = g, h = h on X.
Then & : (R, u) - (S, v) is continuous which proves the sufficiency. Suppose that h
exists. Then either % has no cluster point — and then A(p) = q and h is 1-1 — or
there is lim # = b. If it were b e h(X), then we should have A(R) = h(X). Thus
h(X) n U is compact for any compact ¢'-nbd U of b. By 2.3.3A, U n h(X) is not
compact for any such U — a contradiction which completes the proof.

2.3.5. Lemma. Let (X,1), (Y,t) be Lc., h:(X,1) > (Y,t) a homeomorphism
into (Y, 1).

A. h*%3 < Z3% iff either B has no cluster point in (Y, t') or # has a limit
point in (Y, t') (% is from 2.3.3).

B. h* %7 is dense in L3 if W*¥7 < £%.

Proof. A: Let # have no cluster point, fe £y, a = lim f. We prove that h*f
has a limit at infinity. Given ¢ > 0 and a compact set L = Y such that |f - a| <e
on Y — L, we see by 2.3.3B that h(X) n L = K is compact, thus also h~*(K) is com-
pact. We have |h*f — a| < & on X — h™'(K), hence lim h*f = a. If # has a limit !
in (Y, t') then clearly lim h*f = f(I) which proves the “if”’ part.

Let # have neither no cluster point in (Y, ¢'), nor a limit point. Thus there is
a cluster point ¢ of # which is not the limit of 4. Thus there is a #-nbd K_ of ¢ such
that for any compact K = X we have h(X — K) ¢ K,. Thus h(X — K) — K, # 0
for any compact K < X. Let (Z, u) be the one-point compactification of (¥, '),
e:(Y,t) > (Z,u) the homeomorphism into (Z, u), where Z — ¢(Y) is a single
point {p}. Then #" = {e(h(X — K) — K,)|K = X compact} is a filter base in
(Z, u) which has a cluster point z € Z as (Z, u) is compact. Clearly ¢(c) # z. We take
g € C((Z, u) » C) with g(e(c)) = 0, g(z) = g(p) = 1. Then f = g o e€ Ly (see the
end of the proof of 2.3.2) but h*f ¢ £%. Indeed, given a compact set K = X, then
U, ={teZ||g(t)| > 2} is a u-nbd of z. As z is a cluster point of #", there is a €
eU,ne(h(X — K)—K,). Thus x =h"'oe '(a)eX — K and h*f(x) > . We
may suppose |g| < 1 on ¢(K,), otherwise we can take a smaller K,. As c is a cluster
point of 4, thereis be h(X — K) n K. Then y = h™'(b)e X — K and h* f(y) < 1.
For any compact K = X we have found two points x, y € X — K with h* f(x) > $,
h* £(y) < %, hence h*f ¢ 2.

B: Let (R, u), (S,v) be the one-point compactifications of (X, ) and (Y, '),
respectively. As h* ¥y < £¥, we get from 2.3.5A and 2.3.3 that there is a continuous
extension f : (R’, u) > (S, v) of h which is 1-1. Clearly M = h*C((S,v) —» C) is
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a symmetric subalgebra (see 2.2.2B) of C = C((R’, u) — C) which separates points
of R’ and contains any constant function. By the Stone-Weierstrass theorem [5,
Ch. 8, Sec. 3, p. 283] M is norm dense in C. Thus h*%y is dense in £¥ since
23 ={f|x|feC}, 27 = {g]Y| g € C((S, v) - C)}, h = h/X. The lemma is proven.

2.3.6. Theorem. Given a locally compact presheaf & = {%, = (X,,7,) |0.] <4 =)}
(see 2.1.2A) and B = A such that {(B<) is well ordered, suppose that & is from
CLOS (i.e. 0y : Xy — %, is continuous for all «, fe A, o < f) and

(1) Either B is confinal in {AS) or (A< ) is ordered, (A — BZ) well ordered
and A — Bc Z.

(2) (a) For every a, p € B the map g,4 is a homeomorphism of %, into %, such
that the filter base B,5 = {0,4(X, — K)| K < X, compact} either has no cluster
point or has a limit point in % .

(b) The family & = {of, = %, | a€ B} is connected. (This is always satisfied
if the following holds: If a € B is such that the predecessor o. — 1 of « in (BZ)
does not exist, and if A,: %L, = lim Sy, > %, is the canonical map, then 2k
carries s, onto a norm dense subset of G = {fe C(¥, — C)| onfest, for all
y € Bl«]}). Then the &-hull T of %y is a compact hull of S and A" = lim 7,
F =lim &y, J =1im & are f.s. The condition (2b) may be omitted if there is
a countable confinal set in B. (Here 0) : &, — &, are the canonical maps).

Proof. By 2.3.2 and 2.3.5B, &/, separates points and closed sets of & and
0y a+19,+1 is norm dense in o7, for all we B. By 2.3.5A, o}, maps o/, into o,
for all o, B € B, « £ B, thus the conditions of Th. 2.2.7 are fulfilled which yields our
statement. The statement in the parentheses in (2b) follows from 2.2.5C and 2.2.4d.

2.3.7. Lemma. Let (X, 1), (Y, ') be l.c., h : (X, t) > (Y, t') a homeomorphism into
(Y, t'). Then #3% < h*%3.

Proof. Let fe £%, | = lim f. We denote by (Z, u) the onepoint compactification
of (Y,1'). We may suppose Y < Z, Z — Y= {p} — a single point, ¢’ = u|Y (see
0.14). Then the function f=foh™! on h(X), f =1 on h(X)” — h(X) is defined
on h(X)~ (h(X) is the u — closure of h(X)). We show that f'is u/h(X)~ continuous.
To this end we prove this statement (S): If z € h(X)™ — h(X), ¢ > 0, then there is
an open u-nbd U of z such that |[fo h™* — I| < & on U n h(X). Indeed, as fe £%,
there is a compact K = X such that !f~ l| < eonX — K. Thus |fo h™t - l| <e
on h(X) — h(K). Then U = Z — h(K) has the desired property, which proves (S).

By (S), f is continuous at the points of h(X)~™ — h(X). We prove the continuity
of f at the points of A(X). If z € h(X), ¢ > O then there is u-nbd V of z such that
|[7(») — 7(z)| < & for all ye VA h(X). Let ye V (h(X)~ — h(X)). By (S) we can
take a u-nbd U of y with |f - l] < gon Un h(X)". We may assume U = V and

take x € U n h(X). Then |f(z) — f(»)| = |7(z) — 1| < |7 (z) — F(x)| + [F(x) — 1| <
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< 2¢ so fis u/h(X)~ — continuous. There is. an extension § € C((Z, u) - C) of f.
Setting g = §|Y we have g € 7 and h*g = f. The proof is thereby finished.

2.3.8. Theorem. Given a locally compact presheaf & = {%‘u = (X, ra) [Q,,,,| <A§>}
from CLOS and a set B = A such that the condition (1) of Th. 2.3.6 holds, assume
that

(a) For every o€ B the map @,,+, is a homeomorphism into %, ,.

(b) The family & = {sf, = &%, | ae B} is connected (this is satisfied namely
if the following holds: If o€ B is such that the predecessor « — 1 of o in (B<)
does not exist, f e B[] and Gy, = {fe C(&, = lim Fp,; > R) | 0)x f € o, for all
ye{pa) N B}, then Gy, = 2l (h: Ly > Loy 0w Xy~ Ly y€ B[] are the
canonical maps)). Then there is a compact hull I of %y such that lim 7, ¢ =
= lim & and lim & are f.s. The condition (2b) may be omitted if there is a count-
able confinal set in B and if g,; is a homeomorphism of %, into %, for all a, f € B,
a < B

Proof. By 2.3.7 and Th. 1.5.1, # is f.s. By 2.2.9, there is a compact hull 7 of &
such that lim J is f.s. because & is strongly separating.
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