Previous |  Up |  Next

Article

References:
[1] V. D. Belousov: Foundations of the theory of quasigroups and loops. (Russian), Moskva 1967. MR 0218483
[2] R. H. Bruck: A survey of binary systems. Springer Verlag, 1966. MR 0093552 | Zbl 0141.01401
[3] I. A. Florja M. I. Ursul: F-quasigroups with the inverse property. (Russian), Questions of the theory of quasigroups and loops, Kišiněv 1971.
[4] J. Ježek T. Kepka: Varieties of abelian quasigroups. Czech. Math. J. 27 (1977), 473-503. MR 0450446
[5] T. Kepka: On one class of quasigroups. Čas. Pěst. Mat. 97 (1972), 347-356. MR 0316616 | Zbl 0248.20086
[6] T. Kepka: Quasigroups which satisfy certain generalized forms of the abelian identity. Čas. Pěst. Mat. 100 (1975), 46-60. MR 0435276 | Zbl 0306.20080
[7] T. Kepka: Structure of triabelian quasigroups. Comment. Math. Univ. Carolinae 17 (1976), 229-240. MR 0407182 | Zbl 0338.20097
[8] T. Kepka: Structure of weakly abelian quasigroups. (to appear). MR 0486264 | Zbl 0394.20055
[9] T. Kepka: A note on WA-quasigroups. Acta Univ. Carolinae Math. Phys. 19/2 (1978), 61-62. MR 0509348
[10] D. G. Murdoch: Quasigroups which satisfy certain generalized associative laws. Amer. J. Math. 61 (1939), 509-522. DOI 10.2307/2371517 | MR 1507391
[11] H. Orlik-Pflugfelder: A special class of Moufang loops. Proc. Amer. Math. Soc. 26 (1970), 583-586. DOI 10.1090/S0002-9939-1970-0265498-1 | MR 0265498 | Zbl 0223.20081
Partner of
EuDML logo