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Czechoslovak Mathematical Journal, 29 (104) 1979,|Praha 

F-QUASIGROUPS ISOTOPIC TO MOUFANG LOOPS 

ToMÀâ KEPKA, Praha 

(Received March 11, 1977) 

One of the oldest tasks of the theory of quasigroups is to study generalizations of 
groups. One of the oldest examples of generalized groups is the class of F-quasi-
groups (the first article on this subject has appeared in 1939). The main aim of the 
present paper is to describe F-quasigroups isotopic to Moufang loops. It is shown that 
these quasigroups consist of three basic classes, namely groups, medial quasigroups 
and distributive Steiner quasigroups. Unfortunately, the author does not know 
whether there are any F-quasigroups not isotopic to a Moufang loop. 

1. PRELIMINARIES 

Some details concerning quasigroups and loops may be found in [1] and [2]. 
Let Q be a quasigroup and a e Q. We denote by e{a) and f{a) the right and left 

local unit of a, respectively. Hence f(a) a = a = a e(a) and e, f are mappings of Q 
into Q. Further we define two mappings L ,̂ Ra of Q into Q by L (̂b) = ab and 
Ra{b) = ba for every b e Q. We denote by J^(Q) the group generated by all these 
permutations L ,̂ R^, a e Q and we put ^{Q, a) = {g e Jf{Q) | g{a) = a}. Further 
we put S{a,b) = Ц^Ь~^Ь^ь, Т(а, b) = R;^R;^R„b and F(a) = R'^La for all 
a, be ß. 

Let б be a left (right) loop. The left (right) unit of Q will be denoted by J. Further, 
if a E Q then a~^ = b and "^a = c, where ab = j = ca. The following result is well 
known (see [1], Theorem 4.4). 

1.1. Lemma. Let Q be a loop. Then the group J'{Q,j) is generated by the per­
mutations S(a, b), T(a, b), V(a), a, b e Q. 

A congruence r of a quasigroup Q is said to be normal if the factor Qjr is a quasi­
group. A subquasigroup P of Q is said to be normal if P is a class of a normal con­
gruence. The following result is classical (see [1], Theorem 4.5). 
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1.2. Lemma. Ä subloop P of a loop Q is normal iff g{a)eP for all a e P and 
geJ^iQj). 

Let Q be a quasigroup. We put 

A[Q) =^ {a e Q\ ba . cd = be . ad for all b, с, d e Q] , 

^ i ( ô ) = {a e Q\ ab . cd = ас . bd for all b, с, d e Q} , 

^г(б) = {̂  e Q\bc , da = bd . ca for ail b, c, d e Q} , ' 

M{Q) = {aeQ\ba .cb = bc .ab for ail b, с e Q} , 

D[Q) = {a E Q\ ab . ca = ac . ba for ail b, с e Q] , 

Ni{Q) = {a G Ô I a . bc = ab . с for all b, с e Q] , 

N^{Q) = {aeQ\bc .a = b . ca for ail b, с e Q] , 

N^{Q) =: {aeQ\ba .c = b , ac for ail b, с e Q} , 

N{Q) = i V , ( ô ) n i V , ( e ) n i V ^ e ) , 

-^(ô) = {<̂  e б I <̂ b = ba for every b e Q] , 

C(Q) =N{Q)nK{Q), 

Id Q = {a e Q\ a = aa} . 

Moreover, we denote by Aut Q the automorphism group of Q. 

1.3. Lemma. Let Q be a quasigroup. Then: 

(i) N^{Q){N^{Q)) is non-empty iff Q is a left (right) loop. In this case, Nj^{Q) 
(iV^(ß)) /5 a subgroup of Q. 

(ii) N[Q) is non-empty iffQ is a loop. In this case, N[Q) is a subgroup of Q, 

(iii) C(ß) is non-empty iff Q is a loop. In this case, C(ß) is an abelian subgroup 

Proof. See [1], Tlieorem LL 

A quasigroup Q is called an S-quasigroup if S(a, b) is an automorphism for all 
a,beQ. Similarly we define T-quasigroups, V-quasigroups, ST-quasigroups, STV-
quasigroups. STV-loops are called also A-loops. The following lemma is clear from 
the definitions of S(a, b), T{a, b) and V{a). 

1.4. Lemma. Let Q be a quasigroup. Then: 

(i) ab . с = a . bS(a, b) (c) and с . ab ~ Т{а, b) (с) а . b for all a, b, ce Q. 
(ii) K{Q) = {a e ß I V{a) = 1} andK{Q) = {a e ß | V{b) (a) ^ a for every b e Q]. 
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1.5. Lemma. Let Q be an A4oop. Then: 

(i) If P is a subloop of Q and g(P) e Pfor every g e Aut Q then P is normal, 

(il) N{Q) and C(Q) are normal subgroups of Q. 

(iii) K{Q) is a normal commutative subloop of Q, 

Proof, (i) follows from 1.1 and 1.2, (ii) follows from (i) and 1.3 and (iii) follows 
from (i) and 1.4(ii). 

A quasigroup Q is called an LIP-quasigroup (RIP-quasigroup) if there is a mapping 
p{q) of Q into Q such that p(a) . ab = b (ba , q(a) = b) for all a, b e Q. Further, 
Q is called an IP-quasigroup if it is both LIP-quasigroup and RIP-quasigroup. 

The following results are proved in [1], Chapter 5. 

1.6. Lemma. Let Q be an LIP-quasigroup. Then p^ — 1, pf = f, p(a) a = e(a), 
a . p(a) = e p(a) and a . p(a) b = b for all a, b e Q. Moreover, if Q is a right loop 
then ~^a = p(a) = a~^ for every a e Q. 

1.7. Lemma. Let Q be an IP-quasigroup. Then p(ab) = q(b) q(a) and q(ab) = 
= p(b) p(a)for all a,be Q. 

1.8. Lemma. Let Q be an IP-quasigroup. Then: 

(i) / / Q is commutative then p = q ^ Aut Q. 

(ii) / / Q is a loop then p(a) = a~^ = q(a) and (cib)~^ = b^^a'^ for all a, b e Q, 

A quasigroup Q is called medial if Ä(Q) = Q. Further, Q is called monomedial 
(dimedial, trimedial) if each of its subquasigroups generated by one (two, three) 
element(s) is medial. 

A quasigroup Q is called a WM-quasigroup if aa . be = ab . ас and be . aa = 
= ba . ca for all a, b, с e Q. 

A quasigroup Q is called unipotent if aa = bb for all a, b e Q. 
A quasigroup Q is called idempotent if Id ß = Q. 
A quasigroup Q is called distributive if a . be = ab . ac and be . a = ba . ca for 

all a, b, ce Q. 
A quasigroup Q is called a Steiner quasigroup if it is commutative idempotent 

and a . ab = b for all a, b e Q. 
A mapping r̂ of a quasigroup Q into itself is said to be (left) regular if there exists 

a mapping h such that g(ab) = h(a) b for all a,beQ. 

Remark . The notation e(a),f(a), L^, S(a, b), etc., will be used only if the basic 
operation is written multiphcatively. We shall write в*(а), /*(«), L*, S(a, b, *), 
when another symbol (say *) is used. 
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2. PSEUDOAUTOMORPHISMS 

All results of this section are auxihary and their proofs are only sketched. However, 
almost each of the following assertions is either implicity or explicitly contained 
in [1] and [2]. 

Let g be a permutation of a quasigroup Qand x e Q an element. We say that g is 
a left pseudoautomorphism with a left companion x of the quasigroup Q if x g[ab) = 
= X g(a). g{b) for all a, b e Q. Dually we define right pseudoautomorphisms. 

2.1. Lemma. Let a quasigroup Q possess a left pseudoautomorphism g with 
a left companion x. Then: 

(i) Q is a left loop and g{j) = e{x). 

(ii) If Q is a loop then g{j) = j . 

(iii) / / Q is an RIP-quasigroup then g{a~'^) = g{a)~^ for every a E Q. 

(iv) / / Q is an IP-loop then g is a right pseudoautomorphism and x~^ is its right 

companion. 

Proof, (i) X . g{g~^ e{x) a) = x g{a) for every ae Q. 

(ii) follows from (i). 

(iii) X = X g(aa~^) = x g{a) . g(a~^) and x g(a~^)~^ = x g{a) for every a e Q. 

(iv) g(b-'a-') X-' = g{ab)-'. x"^ = (x g{a) . g{b))-' = g{b-'). g{a-') x'' for 

all a, b e Q. 

2.2. Lemma. Let g, h be two left pseudoautomorphisms of a left loop Q and 
let X, y be their respective left companions. Then g h is a left pseudoautomorphism 
and X g(y) is its left companion. 

Proof. X g(y) .gh{ab) = x g{y h{ab)) = x g{y h{a)) . g h{b) = (x g{y) . g h{a)) . 
. g h{b) for all a.beQ. 

2.3. Lemma. Let g with a left companion x be a left pseudoautomorphism of a left 
loop Q. Then g~^ is a left pusedoautomorphism and g~^(x~^) is its left companion. 

Proof. xg(g~^{x~^) g~^(a)) = a and xg(g~^[x~^) g~^(ab)) = ab = 
= {xg{g-\x-')g-\a)))gg~\b) = xg{g-\x-')g-'{a),g-\b)) for all a, b e Q. 

2.4. Lemma. Let Q be a left loop, g a permutation of Q and x e Q. The following 
conditions are equivalent: 

(i) g e Aut Q and x eNi{Q). 

(ii) g is a left pseudoautomorphism, x is its left companion and xe iVi(ß) . 

(iii) g e Aut Q and g is a left pseudoautomorphism with a left companion x, 
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Proof. Easy. 

2.5. Corollary. Let Q be a left loop. Then every automorphism is a left pseudo-
automorphism and left pseudoautomorphisms form a group. 

2.6. Lemma. Let g with a companion x be a pseudoautomorphism of a commu­
tative loop Q. Then g is an automorphism and x belongs to N[Q). 

Proof. X g(ab) = x g{a) . g{b) = x g{ba) = x g{b). g(a) for all a, b e Q. Hence 
X G N[Q) and the rest is clear. 

2.7. Lemma. Let Q be a left loop and ab~^ eiVi(ß) for some a, b e Q. Then 
a = ab-^.b. 

Proof. e{ab~^) = j since N^(Q) is a subgroup, and hence ab~^ = ab~^ . bb~^ = 
= {ab-'.b)b~K 

2.8. Lemma. Let Q be a left loop and g a left pseudoautomorphism with a left 
companion x. The following conditions are equivalent for any y E Q: 

(i) y is a left companion of g. 

(il) yx-'eN,{Q). 

(iii) y = ax for some a ENI{Q), 

Proof, (i) implies (ii). By 2.2 and 2.3, yx~^ = ygg'^ix"^) is a left companion 

ofgg-'^L 

(ii) impHes (iii) by 2.7 and (iii) implies (i) trivially. 

2.9. Lemma. Let g, h be two left pseudoautomorphisms of a left loop Q. The 
following conditions are equivalent: 

(i) g and h have a common left companion. 

(ii) g and h have the same left companions. 

(iii) g'^h is an automorphism. 

Proof, (i) impHes (ii) by 2.8. 

(ii) implies (iii). Let x be a left companion of both g and h. Then g~^{x~^) g~^(x) 

is a left companion of g~^h. But x = :^g{g~^{x~^) g~^{x)), and so g~^{x~^). 

(iii) impHes (i). Let x be a left companion of g. Then x = x g(j) = x e(x) is a left 
companion oî gg^^h = h. 

2.10. Lemma. Let Q be a left loop and g a left pseudoautomorphism with a left 
companion x. Put a * b = RJ^i^) b for all a, b e Q and suppose that g(j) = j \ 
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Then Q(*) /5 a loop, g Is a left pseudoautomorphism of ß(*) and x is its left com­

panion. 

Proof. X * g(aj * b) = x g(ab) = (x * g{ci))j * g{b), and hence x %g(aj) = 
= {x * g{a))j and x * g{aj * Ь) = (x * g(aj)) * g{b) for all a,beQ. 

3. MOUFANG LOOPS 

Details concerning Moufang loops may be found in [1] and [2]. 

3.1. Lemma. Let Q be a Moufang loop. Then K{Q) = M(Q) is a commutative 
sub loop of Q. 

Proof. Let X, у EK{Q) and a e Q. Then x{a . xy) = (xa . x) у = y(xa . x) = 
= y{x . ax) = (yx . a) X = x{yx . a) = x{xy . a). Hence a . xy = xy . a and xy e 
eK{Q). Further, ax~^ = x~^xax~^ = x~^axx~^ = x~^a and we have proved that 
K(6) is a subloop of Q. If xeK{Q) and a, b e Q then ax . ba = (a . xb) a = 
= (a . bx) a = ab . xa and x is contained in M(ß). Similarly we can show that M(ß) 
is a subset of K(Q). 

3.2. Lemma. Let Q be a Moufang ST-loop, Then K[Q) is a normal subloop. 

Proof. Clearly, g(K[Q)) is a subset of i^(ô) for every automorphism g of Q. 
Further, V(a) (x) = x for all ae Q and XEK(Q). The rest is clear from 1.1 and 1.2. 

3.3. Lemma. Let Q be a Moufang loop, K{Q) a normal subloop and a e Q.Then 
the subloop generated by {a} u K[Q) is commutative. 

Proof. Let P be the subloop generated by K{Q) u {a]. Then K(Q) is contained 
in K(P) and it suffices to show that a e К{Р). Let b e P and let G be the subloop 
generated by {a, b}. Then G is a group and GJG n K{Q) is a subgroup of PlK{Q). 
However, PJK{Q) is a cychc Moufang loop, hence a group, and therefore GjG n K{Q) 
is cyclic. On the other hand, G r\K{Q>) ç C{G) and consequently GJC^G) is cychc. 
Thus G is commutative and ab = ba. 

3.4. Lemma. Let Q be a Moufang loop. Then every mapping from . /(Q, j) is 
a pseudoautomorphism of Q. 

Proof. See [1], Theorem 6.4. 

3.5. Lemma. Let Q be a Moufang loop. Then: 

(i) / / Q is commutative then Q is an Ä-loop. 

(ii) If Q is a V-loop then a^ GN(Q)for every a e Q, 
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Proof, (i) follows from 3.4 and 2.6, (ii) follows from 3.4, 2.4 and [1], Corollary 
6.4.1. 

3.6. hemmsi.Letg be a pseudoautomorphism oj a Moufang loop Q. Then g(ax) = 
= g{^) 9{^)^ д{^^) = g{^) g{^) (^nd g{x) eN(Q)for all a G Q and x eN{Q). 

Proof. See [1], Lemma 6.2 and its proof. 

3.7. Lemma. Let Q be a Moufang loop. Then N{Q) is a normal subloop of Q. 

Proof. Apply 3.4, 3.6 and 1.2. 
Let Q be a loop. We shall say that Q satisfies the condition NK if for every ae Q 

there exist b eN{Q) and с EK{Q) such that a ~ be. 

3.8. Lemma. Let Q be a loop, a, с G N{Q) and b, d GK{Q). Then ab . cd— 
= ас. bd. 

Proof, ab . cd = a(b . cd) = a(^cd . b) = a{c . db) = ас . db = ас . bd. 

3.9. Lemma. Let Q be a Moufang loop satisfying NK. Then Q is a homomorphic 
image of the cartesian product N(Q) X K{Q). 

Proof. Define g(a, b) = ab for all a GN{Q) and b GK(Q). According to 3.8, g is 
a homomorphism. However, Q satisfies NK, and hence g is onto Q. 

3.10. Lemma. Every Moufang loop satisfying NK is an A-loop. 

Proof. Every group is an A-loop and every commutative Moufang loop is an 
A-loop. On the other hand, as is easy to see, A-loops form a quasigroup variety. In 
particular, A-loops are closed under homomorphic images and we can apply 3.9. 

3.11. Lemma. Let Qbe a Moufang loop satisfying NK. Then N(K{Q)) is contained 
inC{Q). 

Proof. There is a homomorphism g of N{Q) x K{Q) onto g. If aeN{K{Q)) 
then (j , a) E C{N{Q) x K{Q)), and therefore a = g{j, a) e C(ß). 

3.12. Lemma. Let Q be a Moufang loop satisfying NK. Then every pseudoauto­
morphism of Q is an automorphism. 

Proof. Let g with a companion x be a pseudoautomorphism. Then x = yz for 
some y 6iV(ß), zeK{Q)md z is a companion of g. Let a, b GK{Q) and с EN(Q). 
Then g-\c) G N{Q)^dg(a) с = g{a)gg-\c) = g(ag--\c)) = g{g~\c)a) = с g{a) 
by 3.6. Further, g{a). cb = g{a) с . b = с g{a). b = с .b g{a) = cb . g{a). However, 
Q satisfies NK and it is evident that g(a) G K{Q). Similarly g'~^{a) GK(Q) and g with 
a companion zis a pseudoautomorphism of K{Q). By 2.6 and 3.11, z G C(Q), and 
hence of is an automorphism of ß . 
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3.13. Lemma. Let Q be a Moufang loop satisfying NK. Then: 

(i) K(Q) is a normal subloop of Q and QJKiQ) is a group. 

(ii) If as Q then the subloop generated by {a} u X(ô) is commutative. 

Proof, (i) K{Q) is normal by 3.10,3.2 and QIK{Q) is a group since Q is generated 

by K{Q) и N{Q), 
(ii) Use (i) and 3.3. 

A Moufang loop Q is called primitive if Q is commutative and a^ = j for every 
aeQ. 

3.14. Lemma. Let Q be a Moufang loop satisfying NK, Then: 

(i) N{Q) is a normal subloop and QlN{Q) is a primitive Moufang loop. 
(ii) If a, b E Q then the subloop generated by {a, b} u N(^Q) is a group. 

Proof, (i) N(Q) is normal by 3.7, Q\N{Q) is commutative since Q is generated 
by N{Q) u X(ô), and QjN^Q) is primitive by 3.5(ii). 

(ii) With respect to 3.9, we can assume that Q is either a group or a commutative 
loop. The first case is obvious. If Q is commutative then N{Q) ~ C{Q) and the 
assertion follows from the fact that Q is diassociative. 

3.15. Lemma. Let Qbe a Moufang loop satisfying NK. Suppose that Q is isotopic 
to a commutative quasigroup. Then Q is commutative. 

Proof. There are two permutations g, h of ß such that g{a) h{b) = g{b) h{a) 
for all a, b e Q. Then xa . b = xb . a for all a, b e Q, where x = g h~^{j). However, 
X = yz, y e N{Q), z e K{Q) and y(az . b) = y{za . b) = {y . za) b = {yz .a)b = 
= (j/z . b) a = y{zb . a) = y{a . zb) for all a, b EK{Q). Hence z eN{K{Q)) and 
z e C(6) by 3.11. It is easy to see that xeN{^. Consequently x . ab = xa . b = 
= xb . a = X . ba for all a, b e Q. 

3.16. Lemma. Let Q be a loop and g a mapping of Q into Q. The following 
conditions are equivalent: 

(i) ab . с g[a) = (a . be) g{a) for all a, b, ce Q. 
(ii) Q is a Moufang loop and a~^ . g(a) eN{Q)for every a e Q. 

Proof. See [11], Theorem 1. 

3.17. Lemma. Let Q be a Moufang loop and g a mapping of Q into Q. The 
following conditions are equivalent: 

(i) a g{a). be = ab . g{a) с for all a, b, ce Q-
(ii) g{a)eK{Q) and a'^ . g{a)eN{Q) for every a e Q, 

69 



Proof, (i) implies (ii). a . g{a) b = aj . g{a) b = a g{a) • b, and hence ab . g{a) = 
= a . fe g{a) by Moufang's theorem. Then a . b g{a) = ab . g{a) = ab , g{a)j = 
= a g{a) .b = a . g[a) b yields g{a) e K{Q). Now ab . с g{a) = ab . g{a) с = 
= a g(a) . be = (a . be) {g{a)j) = (a . be) g{a) and we can apply 3.16. 
(ii) imphes (i.) {ab . с g{a)) (gia)'^ . a) = ab , ca = (a , be) a = {{a . be) g{a)) , 

. {g{a)~^ . a), and therefore ab . e g{a) = {a . be) g{a)' In particular, a g{a) . 

. e g{a) = {a . g{a) e) g{a) = (a , e gla)) g{a) for all a, e e Q, Thus a g{a) . b = 
= ab . g{a) and a g(a) . be = {a . be) g(a) = ab . e g{a) = ab . g{a) e for all a, 
b,ceQ. 

3.18. Lemma. Let Q be a Moufang loop sueh that a g{a), be = ab . g{a) e for all 
a.b.ee Q and a mapping g. Then Q satisfies NK, 

Proof. We have a = g{a)-^ a . g{a) and g{a) e K{Q), gia)'^ a e N{Q) by 3.17. 

3.19. Lemma. Let Q be a Moufang loop and let g e Aut Q be sueh that g~\a~^) . 
,aeK{Q) for every a e Q. Then a~^ . g{a)eK{Q). 

Proof. It is enough to take into account that K(Q) is a subloop and g{a~^) = 
= д{аГ. 

3.20. Lemma. Let g be an automorphism of a Moufang loop Q. The following 
conditions are equivalent: 

(i) a~'^^ . g~^{a) eN(Q) for every a e Q. 
(ii) a"^ . g{a^)eN[Q) for every ae Q. 

(iii) g~'\a) . a~^ eN(Q) for every a e Q, 
(iv) g{a^') . a'^ EN{Q) for every ae Q. 

Proof. Similar to that of 3.19. 
Let ß be a Moufang loop and g^ h two automorphisms of Q. We shall say that g, h 

satisfy the condition (F) ïî gh = hg, a~^. g{a), a~^ . h{a) eKyQ) and a~^ . g(a^), 
a~^ . h[a^') eN(Q) for every a e Q, 

3.21. Lemma. Let Q be a Moufang loop and let g, h e Aut Q satisfy (F). Then: 

(i) a . be = {g{a) b) (g(a~^) a . e) for all a, b, e e Q. 

(ii) be . a — {b . a h{a~^)) {c h{a)) for all a, b, e e Q. 

(iii) K{Q) = {a e Ô I g\b) a , e h%b) = g\b) e . a h\b) for all b, e e Q]. 

(iv) Q satisfies NK. 

Proof, (i) Put fc(a) = a~^ . ö^"^(a)forevery a G Q. Itiseasy toseethat fc(fl) еХ:(б) 
and a""̂  . k{a)eN{Q) for every a e Q. According to 3.17, a k{a) . be = ab . k{a) с 
for all a, b, e e Q. The rest is clear. 
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(ii) is similar to (i). 
(iii) Since a~^ . h{a^), a~^ . g~^(a)EN{Q) for every a e Q, h{a^^) . h g~^{a) and 

a'^ . h g-\a)hdongtoN{Q).UmcQh g~\a-^). h^ д-%а)апаа-^ . h^ g~\a) 
are contained in N{Q). By 3.16, ax . bh^- g~^{a) = (a . xb) h^ g~^^{a) = 
= [a . bx)h^ g~^{a) = ab .xh^ g~\a) for all xe iC(ß) and a, b e Q. Con­
versely, if g^'{a) b . X h\a) = g^{a) x . Z> h^(a) for all a,b e Q then the sub­
stitution a = 7 yields x e K(ß). 

^iv) a = a~^ g{ci^). g{fL~'^) ci^ for every a e Q. 

3.22. Lemma. Lef Qbea Moufang loop and let g G Aut Q be such that a"^ , g{a) e 
eN(Q)for every a e Q. Then a g(a) e N[Q), provided Q is a V-loop, 

Proof. Apply 3.5(ii). 

4. BASIC PROPERTIES OF F-QUASIGROUPS 

A quasigroup Q is called an LF-quasigroup (RF-quasigroup) if a . be = ab . e{a) с 
{cb . a = cf{a). ba) for all a, b, с e Q. If Q is both an LF and an RF-quasigroup 
then we shall say that Q is an F-quasigroup. 

4.1. Lemma. The following conditions are equivalent for a quasigroup Q: 

(i) Q is an LF-quasigroup. 
(ii) L^b) . L.^^lc) = Lj^bc) for all a,b,cE Q. 

(iii) L;^(b) . L:^^IC) = L:\bc) for all a, b, с G ß . 

(iv) S(a, b) = L; ( ] ) for all a, b G Q. 

(v) S{a, b) = S(a, c) for all a, b, CG Q. 

Proof. The equivalence of (i), (ii), (iii) and the implication (iv) implies (v) are 
obvious. 

(i) implies (iv). We have L^^i^) = ab . с = ab . L^yL;^l^{c) = a . bLJ(])(c) = 
= L^L^L^fl^ic). Hence S{a, b) - L^^ly 
(v) impHes (iv). 5(a, b) = S{a, e{a)) = L'^^^L'^L^.^,^ = L'^^y 
(iv) implies (i). a . be = L^Li^c) = L„jjS(a, b)~^ (c) = LafjL^(^„^(c) = ab . e{a) с for all 
a,b,cGQ. 

4.2. Lemma. Let ß be an LF-quasigroup. Then ef = fe and e is an endomorphism 

of Q. 

Proof, a . ef{a) e{a) — f{a) a . ef{a) e{a) = / ( a ) . a e(a) = a = a e(a) for every 
ae Q. Further, ab . e(a) e(b) = a . b e{b) = ab for all a, b G Q. 
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4.3. Lemma. Let Q be an LF-quasigroup and a, b G Q. Then Ь^^К^ = R^Li, iff 
<Ь)= / (а ) . 

Proof. If Lb and R^ commute then ba = R^Li^ e{b) = Lj^R^ e{b) and a = e{b) a. 
Conversely, if e(b) = / ( a ) then b . ca =^ be . e{b) a = be . a for every с e Q. 

4.4. Lemma. Let Q be an LF-quasigroup and a e Q. Then Lff^^yR^^a) = ^е(а)^/(а) 
and eL^ = L^^a>^e. 

Proof, The former equahty follows from 4.3 and 4.2, the latter from the fact 
that e is an endomorphism of ß , 

4.5. Lemma. Let Q be an LF-quasigroup and j eld Q. Then Lj is an auto­
morphism, LjRj = RjLj, Lje = eLj and Ljf =p fLj. 

Proof. Use 4.l(ii), 4.3, 4.4 and the fact that ja = jf{a).ja. 

4.6. Proposition. A quasigroup is a group iff it is an LF-quasigroup (or ah RF-
quasigroup) and a loop. 

Proof. Easy. 

4.7. Proposition. Let Q be an LF-quasigroup, j eld Q, К = {a e Q\ e(a) = j}, 
H = {a e Q \f{a) = j} and G = H n K. Then К is a normal subquasigroup and 
a right loop, H is a subquasigroup and a left lopp and G is a subgroup of Q, 
Moreover, if Q is an F-quasigroup then G is a normal subgroup. 

Proof. By 4.2, e is an endomorphism of Q and X is one of classes of the cor­
responding normal congruence. However, j is an idempotent and consequently К 
is a normal subquasigroup. Further, Lj is an automorphism and H = {a\ Lj(a) = a}. 
Hence Я is a subquasigroup. Now it is evident that G is a subloop, and therefore 
a subgroup by 4.6. If Q is an F-quasigroup then Я is normal, and so G is normal 
as well. 

4.8. Lemma. Let Q be an LF-quasigroup, x e Q, j = e(x) and a * b = a . LJ^[b) 
for all a, b e Q. Then ß(*) is a left loop, j is its left unit and 2(*) /5 an LF-quasi­
group. 

Proof. Clearly, j * a = j . LJ^(a) = a for every a e Q. Further, a *j e{a) = a, 
j e{a) = e*(a) and a ^ {b * c) = a . Lj\bLj\c)) = a{Lj\b) . LjJ^ Lj\c)) = 
= {a Lj\b)) {e{a). L ; J ) LJ\C)) = aLj\b) . Lf\j e{a). Lj\e)) = (a * b) * {e%a) * 
* c) for all a, b, c€ Q. 
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5. PSEUDOAUTOMORPHISMS OF F-QUASIGROUPS 

In the following four lemmas we shall assume that Q is an LF-quasigroup with 
a left unit j . These lemmas are implicitly contained in [1], 

5.1. Lemma. Let a e Q. Then L^i^a) is ^ ^Ф pseudoautomorph ism of Q and aj is 
its left companion. 

Proof. aj(e(a). be) = a{j . be) = a . be = ab . e(a) с ~ (aj . e{a) b) . e{a) с for 
all fe, e G Q. 

5.2. Lemma. Let a,beQ. The left pseudoautomorphisms L^^^^^L^-^ and Lc(^j^ -На.ьт 
have the same left companions. 

Proof. By 5.1 and 2.2, (aj) (e{a) . bj) = a . bj is a left companion of L^yL^y 
On the other hand, Rj(RJ^(a . b/)) == a . bj is a left companion of the other pseudo-
automorphism. 

5.3. Lemma. Let a, b e Q. Then L~^b)L7(l)Le(Rj- Ца.ьт is an automorphism of Q, 

Proof. Apply 5.2 and 2.9. 

5.4. Lemma. Let a о b = RJ^{a) . b for all a,beQ. Then g(o) is an S-loop. 

Proof. We can write Rj{Rj{a) ob)oC = ab,c = a.b L^^{c) = Rj{a) о {Rj{b) о 
о L~(])(c)) for all a, b, с e Q. Hence Rj{a о b) о с = a о {Rj{b) о L^(])(c)), where 
g{a) = eRJ^ (a). In particular, Rj{a) о с = a о L~(̂ )(c) for all a, ce Q, and hence 
Rj{a ob)oc = {aob)o L;^^^b){c) and Rj{b) о L;^1^{C) = b о L~^l^ L'haie) for all a, b,cG 
e Q. This implies the equalities a о {Rj{b) о L^){c)) = {a о b) о LJ(aob)(c) and (a о b) о 
о с = a o{b о L~(b)L~(«̂ )L̂ („ob)(̂ )) ^or all a, b, с e Q. It is evident that S{a, b, o) = 
= Lg^l^Lg^l^Lgf^^^b) for all a,beQ. Let a, b e Q, с = RJ^{a), d = jR7^(b) and h = 
= S(a, b, o). Then h = LJ(c^)LjJ)Lg(jj^-i(^^j)) is an automorphism of Q by 5.3. Hence 
h{j) = j , hRj = Rjh and hRJ^ = RJ^h. Finally, h{x о у) - h RJ%x). h{y) = 
RJ^ h(x). h{y) = h{x) о h(y) for all x, у e Q. 

5.5. Proposition. Let Q be an F-quasi group, x e Q and y = ef{x). Put a ob = 
= R~\a) .Ly^(b) for all a, b e Q. Then Q(o) is an ST-loop, provided yeldQ, 

Proof. Let a ^ b = a . L~^(b) for all a,b eQ. Then Ô(*) is an LF-quasigroup 
and a left loop with left unit y (see 4.8). Further, a о b = Ry^{a) * b = {Ry)~^ (a) * b 
for all a,b € Q. By 5.4, g(o) is an S-loop. On the other hand, у = fe{x) and we can 
use the right hand forms of 4.8 and 5.4 to prove that Q{o) is a T-loop. 

5.6. Corollary. Every F-quasigroup with non-empty Id Q is isotopic to na ST-loop, 
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6. F-QUASIGROUPS OF SOME CLASSES 

6.1. Proposition. Let Q be a WM-quasigroup, Then D(Q) = Q, 

Proof. See [9], Corollary 2. 

6.2. Proposition. The following conditions are equivalent for a quasigroup Q: 

(i) Q is a WM-quasigroup and an LF-quasigroup. 
(ii) Q is a WM-quasigroup and an RF-quasigroup. 

(iii) Q is an F-quasigroup and there exists xe Q such that f{x) a . b e\x) = 
= f(x) b . a e^(x) for all a, b e Q. 

(iv) Q is an F-quasigroup and there exists x e Q such that f^'{x) a . b e(x) — 
= f^{x) b . a e{x) for all a-, b e g . 

(v) Q is a trimedial quasigroup. 
(vi) There are a commutative Moufang loop Q{o), g, he Aut Q(o) and x eN[Q(o)) 

such that gh = hg, a о g{a), a о h{a) e N(Q{O)) and ab = g{a) о h(b) о x for 
all a,b e Q. 

Proof. Apply 6.1 and [7], Theorem 2. 

6.3. Proposition. The following conditions are equivalent for a quasigroup Q: 

(i) Q is an idempotent WM-quasigroup. 
(ii) Q is a distributive quasigroup. 

(iii) Q is an idempotent F-quasigroup. 

Proof. Obvious. 

6.4. Proposition. Every distributive quasigroup is trimedial. 

Proof. See [1], Corollary 8.6.1. 

6.5. Proposition. Every commutative F-quasigroup is trimedial 

Proof. See [7], Corollary 6. 

6.6. Proposition. Let Q be a trimedial quasigroup. Then there is a normal con­
gruence r of Q such that every class of r is a medial subquasigroup of Q and Qjr 
is a distributive Steiner quasigroup. 

Proof. See [7], Theorem 3. 

6.7. Proposition. The following conditions are equivalent for a quasigroup Q: 

(i) Q is an F-quasigroup and Ä{Q) is non-empty. 
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(ii) Q is an F-quasigroup and Q is isotopic to a group. 

(iii) There are a group ß(o), g, he Aut ß(o) and x e C{Q(o)) such that gh == j^g^ 
a~^ о g(a), a"^ о h(a) e C(ß(o)) and ab = g(a) о h(b) о x for all a, b e Q 

Proof. See [6], Theorem 3.2. 

6.8. Proposition. Let Q be an F-quasigroup isotopic to a group. Then A(Q) is 
a normal subquasigroup of Q and QJA^Q) is a group. 

P r o o f See [6], Theorem 3.4. 

6.9. Proposition. The following conditions are equivalent for a quasigroup Q: 

(i) Q is an LF-quasigroup and a right loop. 
(ii) There is an element j e Q such that a . be = ab . je for all a, b, ce Q. 

(iii) Q is a right loop and A(^Q) is non-empty. 
(iv) There are a group Q(o) and h e Aut ß(o) such that ab = a о h{b) for all 

a.beQ. 

Proof. The impHcations (i) impHes (ii) and (iv) impHes (i) are easy. 

(ii) impHes (iii). We have a = a .j e^[a), e{a) = j . e^'(a) and ./ = e(a) for every 
ae Q. Hence j is a right unit and aj . be = a . be = ab . je for all a, b, с e Q. 
(iii) implies (iv). By Theorem 1.1 from [6] there are a group ß(o) and g, h e Aut Q(o) 

such that ab = g{a) о h{b) for all a, b e Q and j is the unit of ß(o). Now a = aj = 

= g{a) о h{j) = g{a) and Ö̂  = 1-

6.10. Proposition. The following conditions are equivalent for a quasigroup Q: 

(i) Q is an F-quasigroup and a right loop. 
(ii) There are a group Q(o) and h e Aut ß(o) such that a~^ о h{a)e C(Q(o)) and 

ab — a о h{b)for all a, b e Q. 

Proof. Apply 6.7 and 6.9. 

6.11. Proposition. The following conditions are equivalent for a quasigroup Q: 

(i) Q is an F-quasigroup and ^ i ( 6 ) is non-empty. 
(ii) Q is an F-quasigroup and J5^(ß) is non-empty. 

(iii) Q is a medial quasigroup. 

(iv) Q is an F-quasigroup and Q is isotopic to an abelian group. 

(y) There are an abelian group ß ( + ) , g,he Ant Q{+) and xeQ such that 
gh = hg and ab = g[a) + h{b) + x for all a, b e Q. 

Proof. Apply 6.7, [1], Theorem 2.10 and [6], Theorem 3.6. 
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6.12. Proposition. The following conditions are equivalent for a quasigroup Q: 

(i) Q is an ST-quasigroup and an LF-quasigroup. 

(ii) Q is an ST-quasigroup and an RF-quasigroup. 

(iii) Q is an F-quasigroup and e(Q),f{Q) Ç Id ß . 

(iv) Id Q is a normal distributive subquasigroup of Q, Qjld Q is a group and Q is 

isomorphic to the cartesian product Id Q x ß/ld Q. 

Proof. See [5], Theorem 12. 

6.13. Proposition. Let Q be an IP-quasigroup and an LF-quasigroup. Then Q is 
isotopic to a Moufang loop. 

Proof. See [3], Theorem 1. 

6.14. Lemma. Let an F-quasigroup Q be isotopic to a Moufang loop. Then every 
loop isotopic to Q is a Moufang loop. 

Proof. It is well known that Moufang loops are closed under loop isotopies. 

7. SEVERAL LEMMAS ON F-QUASIGROUPS 

Throughout this section, let Q be an F-quasigroup and let x, y E Qho such that 
R^Ly = LyR^. Further put g = R^, h = Ly, j = yx, и = e{y) x, v = j / ( x ) , к = 
= gRf^^^g~\ t = hL,^y^h~\ z = g{j) = yx . x, w = h{j) = у . yx, m = gheg~\ 
n — hgfh~^ and a о b = g~^{a) . h~^(b) for all a, b E Q. As is easy to see, Q{o) is 
a loop and j is its unit. 

7.1. Lemma. g{a о b) = k{a) о g(b) and h{a ob) = h{a) о t{b) for all a, b E Q. 

Proof. g{g{a) о h(b)) о h(c) = ab . с = af{c) . be = g{g{a) о h f(c))о h(g{b) о h(c)) 
for all a, b, с E Q. Hence g{a о b) о с = g{a о hfh~^(c)) о h(gh~^(b) о с) for all 
a,b, CE Q. If с = j then g{a о b) = g{a о hfh~^(j)) о g{b). However, hfh~^{j) = 
= hf(x) = V and g{a ov) = g{g~^{a) . h~^(v)) = gRf(x) 9~^{^) = K^)- The latter 
identity can be proved in a similar way. 

7.2. Lemma, a o{b о c) = {k(a) о b) о {m(a) о с), (a о mk'~^{a)) о {b о с) = (a о b) о 
о [тк~^{а) о с), (Ь о с) о а == (Ь о п(а)) о [с о t{a)) and (b о с) о [nt~^(a) о а) = 
= (bont~^{a))o(coa)foralla,b,cEQ. 

Proof. We have g{a) о {h g(b) о t h{c)) == a . bc = ab . e{a) с = (k g{a) о g h{b)) о 
о (hg e{a) о t h{c)) for ail a, b, с E Q. Hence a o{b о с) = {k(a) о b) о (m(a) о с) for all 
a, b, с E Q. In particular, a = k{a) о m{a) and the rest is clear. 
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7.3. Lemma. g{a) = k{a) о z for every a e Q and к is a right pseud о automorphism 
with a right companion z of the loop ß(o). 

Proof. The equality g[a) = k(a) о z is an immediate consequence of 7.1. Further, 
k{a о b) о z = g{a о b) = k{a) о g(b) = k{a) о (fe(b) о z) for all a, b e Q. 

7.4. Lemma. h[a) = w о t{a) for every a e Q and t is a left pseudoautomorphism 
with a left companion w of the loop Q(o). 

Proof. Similar to that of 7.3. 
In the remaining part of this section we shall assume that ß(o) is a Moufang loop. 

7.5. Lemma, m k~^{a), n t~^(a) eK{Q{O)), a~^ о m k~'^(a), n t~^(a) о a~^ belong 
to N{Q{o))for every a e Q. Moreover, Q(o) satisfies NK, 

Proof. Apply 7.2,3.17 (and its right hand form) and 3.18. 

7.6. Lemma. a~^ о k{a), a~^ о t(a), gh e{a), gh f(a) eK{Q(o)) for every a e Q. 

Proof, m k~^{a) = gheRf^^^^ 9~^{^) ^K.(Q(O)) for every a e Q. However, k"^ and 
jRj(^)/c~^ are permutations. Hence m(a) and gh e{a) belong to K{Q(o)). Further, 
a = k{a) о m(a) (see 7.2), and hence k{a'~^) о a eX(ß(o)).Now we can use 7.5, 3.12, 
7.3 and 3.19. 

7.7. Lemma, k, t e Aut Q(o) and z, w eN{Q{o)). 

Proof. Apply 7.3, 7.4, 7.5 and 3.12,2.4. 

7.8. Lemma, a"^ о fc(a^), a~^ о t{a^) eN{Q{o)) for every a e Q. 

Proof. a~^ о m k~^{a) = a~^ о fe"^(a) and n t~^(a) о a~^ = t~^(a) о a~"̂  belong 
to N(Q(O)) and we can use 3.20. 

7.9. Lemma. Let zeK{Q{o)). Then z e C(Q(O)) and kt = tk. 

Proof. We can write k(w) о к t{a) о z = g h{a) = h g{a) = w о t k{a) о t{z). Con­
sequently k{w) о z = w о t{z). Moreover, z e N{Q{o)) n K{Q{o)) = C(ß(o)), and there­
fore k{w) о z ok t{a) = w о t{z) о t k{a). Thus к ?(a) = t k{a). 

7.10. Lemma. Let x = e{p) and у = e{q)for some p, qe Q. Then e{Q) Ç K{Q{o)) 
and z € C(ß(o)). 

Proof, gh e[a) = e{q , a) e{p) = e{qa . p)eK[Q{o)) for every aeQ. However, 
RpLg^ is a permutation. Finally, z = g{j) = yx ,x = e{qp. p) and we can use 7.9. 
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7.11. Lemma. Let x = f{p) and y = f{q)for some p, q e Q. Thenf{Q) с K{Q{O)) 
and w e C(ß(o)). 

Proof. Similar to that of 7.10. 

7.12. Lemma. Let zeK{Q{o)) {or weK(Q{o))). Then k, t satisfy (F). 

Proof. Apply 7.6, 7.7 and 7.9, 7.8. 

7.13. Lemma. Let x = ef{p) and у = ef{q)for some p, q^ Q. Then z,w,zoW€ 
e C(ö(o)) and fc, t satisfy (F). Moreover, ab = k{a) о t{b) о z oW for all a, b e Q. 

Proof. Apply 7.12, 7.10 and 7.11. 

8. QUASIGROUPS LINEAR OVER MOUFANG LOOPS 

In this section, let ß(o) be a Moufang loop, let k, t e Aut Q{o) satisfy (F) and 
q e C(ß(o)). By 3.21, the loop ß(o) satisfies the condition NK. We put ab = k(a) о 
о t{b) о q for all a, b e Q. As is easy to see, б is a quasigroup. 

8.1. Lemma. Q is an F-quasigroup. 

Proof. We can write a , be = (k{a) о (к t(b) о t^{c)) о q о t{q) = {{кЦа) о к t(b)) о 
о {{к^(а~^) о к{а)) о г^(сУ) о q о t(q) for all а, b, с e Q (use 3.21). Hence a . be = 
= k(k(a) о t{b) о q) о t(kt~^(k(a~^) о a о q~^) о t{c) о q) о q — ab . e{a) с since k(a) о 
о tt~^{k{a~^) о а о q~^) о q = а. Similarly we can show that Q is an RF-quasigroup. 

8.2. Lemma. / / ß(o) is commutative then Q is trimedial. 

Proof. By 3.22, a о k(a)^ a о t{a) eN{Q{o)) for every a e Q and we can use 6.2. 

8.3. Lemma. Let P(o) ç g(o) be a subloop such that K{Q{O)) £ P(o). Then P is 
a subquasigroup of Q. Furthermore, if P{o) is a normal subloop then P is a normal 
subquasigroup and the corresponding normal congruences coincide. 

Proof. Since a"^ о k{a), a~^ о k~^(a), a~^ о t{a), a~^ о t~^(a)belong to J^(ß(o)) £ 
e P for every a e Q, we see that k[P) = P = t[P). Further, qGP and it is evident 
that P is a subquasigroup of Q. Let r be a normal congruence of ß(o) such that P(o) 
is one of its classes. If arb then a о b~^ e P, k{a о Ь"^) = k{a) о /с(Ь~^)еР and 
k(a) r k(b). Hence ac — k{a) о t{c) о q and be are in r. The rest is similar. 

8.4. Lemma. M(ô) = До(о)) = M(ß(o)). 

Proof. Let X G M(ß). Then {k\a) о к t(x) о q) o{k t{b) о t^'{a) о q) о q = ах . ba = 
— ab , xa = {k\a) о к t(b) о q) о (к t{x) о t\a) о q) о q for all a, b e ß . Hence 
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{k^(a) о к t{x)) о {b о t4a)) = (к\а) ob) о (к t{x) о t\a)) for all a, b e Q and к t{x) e 
eK{Q(o)) by 3.21(iii). But K(Q(O)) is invariant under automorphisms, and therefore 
x eK(Q{o)). If X eK{Q(o)) then x e M ( Q ) , as one can show proceeding conversely. 
Finally M(ß(o)) = X(ß(o)) by 3.1. 

8.5. Lemma. e{Q)J{Q) ç M(ß). 

Proof. We have e{a) = t~^{k{a~^) о a о q~^) and k{a~'^) о a eK{Q{o)) for every 
a E Q. Hence e(a)eK{Q{o)) = M{Q), The rest is similar. 

8.6. Lemma. M(Q) is a normal subquasigroup of Q and Ö/M(ß) /5 a group. 

Proof. M(Q) is a normal subquasigroup by 8.3, 8.4, 3.13, and ß/M(6) is a group 
by 8.5 and 4.6. 

8.7. Lemma. Let a e Q. Then the subquasigroup generated by {a} u M(Q) is 
trimedial. 

Proof. Apply 8.3, 3.13(ii), 8.4 and 8.2. 

8.8. Lemma. Let P(o) ç Q(o) be a subloop such that N{Q(O)) Ç P. Then P is 
a subquasigroup of Q. Furthermore, if P(o) is a normal subloop then P is a normal 
subquasigroup and the corresponding normal congruences coincide. 

Proof. Similar to that of 8.3 (use 3.22 and the fact that q is contained in iV(ß(o))). 
In the sequel, let H denote the nucleus iV(ö(o)). 

8.9. Lemma. H is a normal subquasigroup of Q and QjH is a distributive Steiner 
quasigroup. 

Proof. Я is normal by 8.8 and 3.7. Let r be the corresponding normal congruence 
(r is a congruence of both Q(o) and ß). If a, Ь e ß then с = a . ab = k{a) о (к t[a) о 
о t\b)) о q о t{q). Since q о t{q) e C(ß(o)) Ç Я, we have с r k{a) о {к t{a) о t\b)). 
Further, a~^ о k{a~^) e Я by 3.22, and consequently er a~^ о (к t(a) о t^'{b)). Finally, 
к t{a~^) о /c(a~^), k(a) о a, t(b~^) о t^{b~^), b о t{b) are contained in Я, and hence 
к t(a~^) о a e H, с r t^{b), с r t(b~^) and с r b. From this we see that x . xy = у for 
all X, у e QJH. Similarly we can show that ab r a~^ о b~^ and ba r b~^ о a~^ for all 
a, b e Q. But ß(o)/Я(o) is commutative by 3.14, and therefore b~^ о a~^ r a~^ о b~^ 
and abrba. Thus ß / Я is commutative. Finally, aa = k(a) ot(a) о q r a~^ r a, 
since a^ is contained in Я by 3.5, and it is seen that ß / Я is idempotent. An application 
of 6.3 completes the proof. 

8.10. Lemma. Let a, b e Q. Then the subquasigroup generated by {a, b} u Я 
is isotopic to a group. 
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Proof. Apply 8.8 and 3.14(ii). 

8.11. Lemma. Let a, с e H, be M(Q) and d e Q. Then ab . cd = ас. bd. 

Proof, a, с eiV(ß(o)), b eK{Q{o)), and therefore ab . cd = {k^-(a) о kt{b) о k{q)) о 
о (к t{c) о t\d) о t{q)) о q = {к\а) о {{к t{b) о к t{c)) о î\d)) о k{q) о t{q) о q = {к%а) о 
о {{к t(c) о к t(b)) о t\d)) о k{q) о t{q) о q = {к\а) о к t{c) о k{q)) о (к t{b) о t\d) о 
о t(q)) о q = ас . bd. 

8.12. Lemma. For every a e Q there are b e H and с e M{Q) such that a = be. 

Proof. There are x e iV(g(o)) and у eK{Q[o)) such that a = x о y. Put b = k"^(x) 
and с = t~^{y о q~^). Then b e H, с e M{Q) and a = be. 

8.13. Lemma. The quasigroup Q is a homomorphic image of H x M(Q). 

Proof. With respect to 8.11 and 8.12, we can define a homomorphism g of 
Я X M[Q) onto Q by g{a, b) = ab for all a G Я and b e M{Q). 

8.14. Lemma. / / Q is unipotent then ß(o) /5 an abelian group. 

Proof. We have aa = k{a) о t{a) о q = bb = k[b) о t{b) о q for all a, b e Q. Hence 
k(a) о t[a) = j \ k[a) = t(a~^) and the mapping a -> a~^ is an automorphism of ß(o). 
It is easy to see that Q(o) is commutative. Further, a о /c(a), a о t(a) = a о k(a~^) and 
a~^ are contained in N(^Q(o)) (by 3.22 and 3.5). Consequently a~^eN(Q(o)) and 
N(Q{o)) = Q. 

8.15. Lemma. Let aa . ba = ab . aa for all a, b e Q. Then ß(o) is commutative. 

Proof. We have {k\a) о к t{a)) о {b о t\a)) = {к\а) ob) о {к t{a) о t\a)) for all 
a, b e Q. However, a~^ о t^-k~^'{a) G N{Q{o)) and hence {a о (t k~^{a) о b)) о 
о t^ k~\a) = (a о t k~\a)) о {b о t^- k~\a)) = (a о b) о (t k~^{a) о t^ k~\a)) = (a о 
o{b ot k~\a)) о t^ k~\a) by 3.16. Thus t k~\a) ob = b ot k~\a). 

8.16. Lemma. Q is an IP-quasigroup iff k^ ~ i = t^. 

Proof. The proof is purely of technical character and hence omitted. 

8.17. Lemma. Let p be a mapping of Q into Q. Then p is a regular mapping of Q 
iff there is x e iV(ß(o)) such that p{a) == x о a for every a e Q. 

Proof. Easy. 

8.18. Lemma. Define a relation r on Q by a r b iff a = p{b) for a regular map­
ping p of Q. Then r is a normal congruence of Q and H is one of its classes. 

Proof. Apply 8.8, 8.9 and 8.17. 
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9. MAIN RESULTS 

By an FM-quasigroup or an FG-quasigroup we mean an F-quasigroup which is 
isotopic to a Moufang loop or a group, respectively. 

9.1. Theorem. The following statements are equivalent for every quasigroup Q: 

(i) Q is an FM-quasigroup. 
(ii) There are a Moufang loop g(o), k, t e Aut Q(o) and q e C{Q(o)) such that 

kt = tk, a~^ о k{a), a~K t{a)eK{Q{o)\ a " 4 k{a% a~^ о t{a^) e N{Q{O)) and 
ab = k(a) о t{b) о q for all a, b E Q. 

Proof, (i) implies (ii). Let p e Q, x = f e^{p), у = ef\p), g = R^, h = Ly, 
z = yx . X, w = y . ух, к = gRf(x)g~^, t = hL^>^h~^ and q = z о w, where a о b == 
= 9~^{^) • h~^(b) for all a,bE Q. Then Q{o) is a Moufang loop. Further, f{x) = 
= e^f^{p) = e{y) and gh = hg by 4.3. On the other hand, x = efe{p), у = eff{p) 
and we can apply 7.13. 
(ii) implies (i). Use 8.L 

9.2. Theorem. Let Q be an FM-quasigroup and M =• M(ô). Then: 

(i) e(ß) , / (Q) ^ M and M is a normal subquasigroup of Q, 

(ii) M is a trimedial quasigroup and QJM is a group. 

(iii) If a e Q then the subquasigroup generated by {a] u M is trimedial. 

Proof. Apply 9.1, 8.5, 8.6 and 8.7. 

9.3. Corollary. Let Q be an FM-quasigroup. Then e{Q) and f{Q) are trimedial 
subquasigroups of Q. 

9.4. Corollary. Every FM-quasigroup is monomedial. 

9.5. Corollary. Every simple FM-quasigroup is either medial or it is a group. 

Proof. Let ß be a simple FM-quasigroup. By 9.2, Q is either a group or a trimedial 
quasigroup. However, every simple trimedial quasigroup is medial (see [7], Corol­
lary 6). 

R e m a r k . Simple medial quasigroups are completely described in [4]. 

9.6. Theorem. Let Q be an FM-quasigroup and a r b iff a = p(b) for a regular 
mapping p of Q. Then: 

(i) r is a normal congruence of Q. 

(ii) Every class of r is a subquasigroup of Q and, moreover^ an FG-quasigroup. 

(iii) ô/r is a distributive Steiner quasigroup. 
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(iv) If H is a class of r and a, b e Q then the subquasigroup generated by {a, b} и H 
is an FG-quasigroup. 

(v) If H is a class of r ihen Q is a homomorphic image of the cartesian product 
H X M(ß). 

Proof, (i) and (iii) follow from 9.1 and 8.18, 8.9. Since Qjr is idempotent, every 
class of r is a subquasigroup. Now let Я be a class of r. With respect to the proof of 
9.1, we can assume that the unit of the corresponding Moufang loop ö(o) is con­
tained in Я . Then Я = iV(ß(o)) and we can apply 8.9, 8.10 and 8.13. 

9.7. Corollary. Let Q be an FM-quasigroup. Then every subquasigroup generated 
by at most two elements is an FG-quasigroup, 

9.8. Theorem. Every unipotent FM-quasigroup is medial. 

Proof. Apply 9.1, 8.14 and 6.11. 

9.9. Theorem. Let Q be an FM-quasigroup. Then Q is trimedial, provided at 
least one of the following conditions holds: 

(i) e is a mapping onto Q. 
(ii) e is a one-to-one mapping. 

(iii) / is a mapping onto Q. . 
(iv) / is a one-to-one mapping. 
(v) Q is dimedial. ^ 

(vi) Q is isotopic to a commutative quasigroup. 
(vii) D[Q) is non-empty. 

(viii) ab . aa = aa . ba for all a, b e Q. 

Proof, (i) and (iii) follow from 9.3, (v) and (viii) follow from 8.15 and 8.2, (vi) 
follows from 3.15 and 8.2. 
(ii) and (iv). If e is one-to-one then e is an isomrophism of Q onto e{Q) and we can 
use 9.3. Similarly the other case, (vii) If D{Q) is non-empty and x e D[Q) then the 
quasigroup ß(*) where a ^ b = Lj^a) . Rx{b), is commutative and (vi) may be used. 

9.10. Corollary. Every F-quasigroup isotopic to a commutative Moufang loop 

is trimedial, 

9.11. Theorem. The following conditions are equivalent for a quasigroup Q: 

(i) Q is an IP-quasigroup and an F-quasigroup. 
(ii) There are a Moufang loop Q(o), k, t e Ant Q(o) and qeC{Q{o)) such that 

kt = tk, k^ = 1 = t\ a~^ о k{al a~^ о t{a) eK{Q{o)), a ~ 4 k{a^\ a ~ 4 t{a^) e 
e N{Q(o)) and ab = k{a) о t{b) о q for all a, b e Q. 

Proof. Apply 9.1, 8.16 and 6.13. 
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