[1] J. С. Alexander:
Compact Banach algebras. Proc. London Math. Soc. (3) 18 (1968), 1 - 18.
MR 0229040 |
Zbl 0184.16502
[2] B. A. Barnes:
A generalized Fredholm theory for certain maps in the regular representation of an algebra. Can. J. Math. 20, 495-504 (1968).
DOI 10.4153/CJM-1968-048-2 |
MR 0232208
[3] F. F. Bonsall J. Duncan:
Complete normed algebras. New York, 1973.
MR 0423029
[5] И. Ц. Гохберг M. Г. Креин:
Введение в теорию линейных несамосопряженных операторов. Москва 1956.
Zbl 1225.01060
[6] Т. Kato:
Perturbation theory of linear operators. Berlin-Heidelberg-New York 1966.
MR 0203473
[7] H. König:
s-numbers, eigenvalues and the trace theorem in Banach spaces. to appear in Stud. math.
MR 0583296
[8] A. Fletsch: Operator ideals. Berlin 1978.
[10] J. Puhl: Riesz elements in Banach algebras. to appear.
[14] K. Vala:
Sur les elements compacts d une algebra normee. Ann. Acad. Sci. Fenn. A. L 407 (1967), 1-7.
MR 0222642
[15] K. Vala:
On compact sets of compact operators. Ann. Acad. Sci. Fenn. A. L 351 (1964), 1 -8.
MR 0169078 |
Zbl 0132.09801
[16] Pak-Ken Wong:
A minimax formula for dual B*-algebras. Trans. Am. Math. Soc, Vol. 224, No 2, 1976(281-298).
MR 0428047
[17] Pak-Ken Wong:
The p-class in a dual B*-algebra. Trans. Amer. Math. Soc, Vol. 188 (1973), 437-448.
MR 0358371
[18] K. Ylinen:
Compact and finite-dimensional elements of normed algebras. Ann. Acad. Sci. Fenn. A. I. 428 (1968), 1-37.
MR 0238089 |
Zbl 0167.43301