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1. INTRODUCTION

M. FREUNDLICH [4] has introduced and studied finite and compact elements in
a commutative normed algebra. Different definitions were given by K. VALa [14].
He called an element u of a normed algebra finite (compact) if the linear operator
x — uxu is finite-dimensional (compact). In [15] it is shown that the set of all finite
(compact) elements in the Banach algebra of bounded operators on a Banach space
coincides with the class of all finite-dimensional (compact) operators.

The purpose of this paper is to introduce the trace of finite elements of a Banach
algebra. This concept includes the notion of the trace of operators. Throughout this
paper M denotes a complex, semi-prime Banach algebra.

An element u € M will be called one-dimensional if there exists a linear functional 7,
on M, such that

uxu = {1, xyu forall xed.

Then there exists a unique complex number tr(u) such that u* = tr(u) u, which will
be called the trace of u. A finite element u in the sense of K. Vala has a representation

n
u = Y u;, where u; is one-dimensional. Moreover, by setting
1

tr(u) = Z::tr(ui)

we get a well-defined trace of u. The trace properties are known to be valid. In
a natural way the definition of nuclear elements is given. It will be shown if the
algebra fulfills certain conditions then the trace admits an extension to the nuclear
elements. Such a condition is the following. We say the Banach algebra 9 possesses
the quasi-approximation property (q.a.p.) if for each minimal idempotent g € M
the Banach space Mg (resp. q9M) has the approximation property. Commutative
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Banach algebras and C*-algebras have gq.a.p.. We also prove that the trace of a nil-
potent nuclear element is zero. Section 6 is devoted the study of trace formulas. The
methods presented here admit the use of the well-known results concerning trace
formulas of certain operator classes to obtain similar results in the general case of
Banach algebras. Particularly we show the effectiveness of the trace formula for
finite elements and the Lidskij trace formula for nuclear elements in C*-algebras.
Finally we obtain for C*-algebras that the nuclear elements coincides with the trace
class of 9.

2. ONE-DIMENSIONAL ELEMENTS

Throughout this paper we suppose that 9 is a complex, semi-prime Banach
algebra. The following condition is equivalent for M to be semi-prime.

2.1. If uxu = O for all x € M then u = 0.

In the next definition we generalize the concept of a one-dimensional operator to
algebras.

Definition 2.2. A non-zero element u € M is called one-dimensional, if there
exists a linear functional 7, on I such that

uxu = {t,xpu forall xeM.
The trace tr(u) of u is defined by
u* = tr(u)u.
For any x, € M with ux,u + 0 we obtain from
(T Xoup U = uxouu = tr(u) uxou = tr(u) (1,, xo» u
that
tr(u) — <Tus x0u> .
<Tu’ x0>
If 9M has an identity then tr(u) = (t,, 1). We denote the set of all one-dimensional
elements of M by F,.
Remark 2.3. Let 9t be a commutative algebra. Then an element u € M is one-

dimensional if and only if there exists a linear functional o, on 9 such that

ux = (o, xy)u forall xeM.
Because of
(T XY u = uxu = u?x = tr(u) ux = tr(u) (o,, x> u

we have the identity
{1, x) = tr(u) {o,, x) forall xeM.
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Remark 2.4. Minimal idempotents of 9t are one-dimensional elements ([3], p. 157).

Remark 2.5. The notion of a one-dimensional element is related to that of a minimal
ideal. RICKART [11] has observed that every minimal left (right) ideal J contains
a minimal idempotent p such that J = Pp. Conversely, let u be a one-dimensional
element and put J := Mu. Then J is a minimal left ideal. In order to prove this
statement let us suppose I to be a left ideal contained in J. Each non-zero ele-
ment z € 3 has the form z = zou. Choose y, € M such that zyyz =% 0. Since
Ty, YoZo) Zoth = zyoz + 0 we obtain <1,, yozo> + 0. For an arbitrary element
x € M it follows

Xu = — XUYoZ, €I .
<Tm YoZo

This yields Mu = 3.
We have a first simple proposition.

Proposition 2.6. Let M = L(E) be the algebra of all bounded linear operators on
a Banach space E. Then the one-dimensional elements of M are exactly the one-
dimensional operators of 2(E). Moreover tr (a ® x) = <a, x).

We now give further examples of one-dimensional elements.

1. Let G be a compact abelian group. The one-dimensional elements of L,(G)
are of the form oy, where o is a complex number and y is a character of G.

2. Let K be a complete regular Hausdorff space. By C,,(K) we denote the Banach
algebra of all complex valued bounded continuous functions on K with the supremum
norm. Then the one-dimensional elements are of the form

o for t =t
5ro(t) = . 0
0 otherwise

where o € C is fixed and t, € K is an isolated point of K.
Lemma 2.7. Let u€ §, and x,y € M such that xuy %= 0. Then xuy € §, and
<txuys t> = <1u7 ytx>'
Proof. Let xuy # 0. Then
Ll 1) xuy = (xuy) t(xuy) = {t, Y1X> xuy .

Thus the assertion is proved.

The spectrum of an element u € M is denoted by Spm(u). When u, v € M we put
UoV:I=uUv — U — U.

Lemma 2.8. Let u € §,. Then Spy(u) = {0, tr(u)}.
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Proof. Suppose A ¢ Spa(u), then there exists a quasi-inverse y € M and 0 =
= u((1/3) u o y) = ((tr(u)[2) = 1) uy — (tr(u)/2) u implies A # tr(u). On the other
hand if 2 # tr(u), 2 % O, then (1/(tr(u) — A)) u is a quasi-inverse for (1/2) u.

3. FINITE ELEMENTS
By & we denote the set of all elements u € M of the form
n
u =>Yu, with u;e%,.

By convention, 0 € §. The elements of & are called finite.

Clearly, & is a two-sided ideal and by Remark 2.5 § = soc (), where the socle
of M is denoted by soc (‘JR) Denote by Y, the centralizer of u € I, i.e.

Y, = {x:ux = xu}.

Then Y, is a closed subalgebra of M. Put D,x := uxu for x € Y,. By Theorem 1.6.9
and 1.6.10 in [18] we have

(3.1) SPrera(Da) = (Spa(u)’ -

If ued, then by Lemma 4.2 D, is a finite-dimensional operator and therefore,
Spar(u) is finite.

Lemma 3.2. If u € M is a given non-zero element such that
dim uMu < o,
then there exists a minimal idempotent p € Mu (resp. p € uM).

Proof. Let v e uMu be a non-zero element such that dim (vimv) is as small as
possible. Then for an arbitrary element y € M, with vyv + 0, we have

(vyv) M(vyv) = vMo.
Consequently, there exists an element z € M such that
VYV = VYVZOYD .
It is
(vzoyv — v) M(vzoyy — v) < VM.
Equality is impossible, since it would imply

0 = vy(vzoyv — v) M(vzvyy — v) yv = vyvMoyo = VMo .
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Hence
’ (vzoyv — v) M(vzoyv — v) = 0.

By condition (2.1) it follows v = vzvyw.

Now we show that v is a minimal left ideal. Let 3 < Mo be a non-zero left ideal.
Then there exist y, €3, x, € M with yexoyo + 0 and y, = yv. We can find an
element z € M such that

D = VZUXQYV .

Consequently,
My < Moxoyr S I .

It follows that Mv is a minimal left ideal. Thus, there is a minimal idempotent
p € Mo < NMu and the assertion is proved.

Corollary 3.3. Let u be a non-zero element of M. Then u e, if and only if
dim uMu = 1.

Proof. Clearly, if u € §, then dim u9u = 1.

Conversely, let dim u9tu = 1. Then by the preceding Lemma there exists a minimal
idempotent p € Mu. We have

(u — up) M(u — up) = uMu .
Equality would imply the false assertion utup = (0). Hence,

(u — up) M(u — up) = (0)
and by condition (2.1) we obtain u = up e §,.
Theorem 3.4. Let M be a complex, semi-prime Banach algebra and let u e M
be a non-zero element such that
dim uMu < oo .
Then there exists an idempotent pe § N uI and pu = u (resp. up = u).

Proof. First we show that every subset of orthogonal idempotents of u9t is finite,
Suppose (p,)i-1 to be an infinite set of non-zero orthogonal idempotents in u9N.
Then, p, = ux, for some x, € M. Choose a sequence of distinct points 4, € C such
that |4, < 27"|x,|~* for all natural numbers n. Then x := Y'2,x, € M and ux =

= Y 2,p,. Consequently, 4, € Sp(ux). This is impossible, since by (3.1) the spectrum

has a finite number of points. By Lemma 3.2 there exists a non-empty set of ortho-
gonal minimal idempotents of uIR. Choose a maximal orthogonal set (p;)i=; of
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n

minimal idempotents. Put p := ) p;. Suppose pu — u = 0, then
i=1

(pu — u) M(pu — u) = uMu .
By Lemma 3.2 there is a minimal idempotent q € (pu — u) M. Clearly, p,g = 0.
Put w:= g — ) gp;. Since wqg = q * 0, it follows that w & 0. It can easily be
i=1

checked that p;w = wp; = 0 for all i, 1 < i < n, w? = w, and we §, 0 uI. This

is a contradiction to the maximality of the system (p;). Therefore, pu = u.
The following corollary was also obtained by J. C. ALEXANDER [1].

Corollary 3.5. Let u be a non-zero element of a complex, semi-prime Banach
algebra M. Then the operator x — uxu has a finite rank if and only if u € §.

Proof. Let u € § By Lemma 4.2 it immediately follows that the operator x — uxu
has a finite rank. Conversely, suppose that the operator x — uxu has a finite rank,
then by the preceding theorem there is an idempotent p € & such that u = pu e §.

4. THE TRACE OF FINITE ELEMENTS

In this section the notion of a trace of finite elements is introduced. The results
we get are analogous to well-known results of the classical operator theory.

Two elements u, v € §, are called equivalent (u ~ v) if there is some x, € M such
that uxyv % 0.

Lemma 4.1. The relation ~ is an equivalence relation on §;,.

Proof. We show the transitivity only. Let u, v, w e &, u ~ v, and v ~ w. There
exist X, and x, such that uxov # 0 and vx,w + 0. By (2.1) there is y, € M such that

0 % (uxgv) yo(uxov) = <1, youxo) uXq0 .
Consequently,
0 = <1, YoUXg) VX W = DYUXUX,W .

Thus, uxqvx;w = 0. This yields u ~ w.

Lemma 4.2. Let u, ve §; and u ~ v. Then the operator

— <Tu’ xvy0> ux

w,pX += UXV
<Tw yOux0>

OU

is one-dimensional, | D, || < |u| ||, and

trace D, , = tr(u) tr(v) .
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Proof. Let uxy,v % 0 for some x, € M. Then there is y, € M such that

0 *+ (uxov) yo(uxev) = <1, yoUXoy Uxev .
Consequently,

Ty XUV
UXVYUX = ——L 07

Du,vx =
<Tw J’oux0> <Tus yOuxO>

XoU .

Therefore, D, , is one-dimensional. It follows from

<Tu’ uxofv)"o>
{Tyy YolUXo)

uxov = uuxovv = tr(u) tr(v) uxov

that &
trace D, , = tr(u) tr(v) .
Lemma 4.3. Let u; € &, such that ), u; = 0. Then
i=1
Yotr(u) = 0.
i1

Proof. The equivalence relation ~ induces a disjoint decomposition 4, of
{1, . n}. For fixed k we get

M=

0=(

i

u)x(Y,u;) = Y upxu; forall xe M.
X ) .

Jjedx i,jedAx

]

By Lemma 4.2 it follows that

0= % tr(uy) tr(w) = (¥ tr(w))*.

i,jedx iedx

Therefore,
Yotr(u) = Y tr(u;) = 0.

i=1 k iedr

Because of the preceding lemma we can introduce a well-defined trace for finite
elements.

Definition 4.4. Let u = Y, u;, u; € &, be any representation of u € §. Then
i=1
tr(u) 1= ) tr(u;)
i=1
is called the trace of u.
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Theorem 4.5. Suppose that M is a semi-prime Banach algebra. Then the trace
has following properties:

(i) The trace is a linear functional on §.
(i) If ue &, and x €M, then tr(ux) = tr(xu).
(iii) If u € § is nilpotent, then tr(u) = 0.
(iv) Let M be an algebra with involution and let u € §. Then
tr(u*) = tr(u) .
(v) Let M be a C*-algebra. Then 7, is a positive functional on M for all v e §,.
Proof. (i) is obvious.
(ii) For ve &, and x € M we have
{tTy XD X0 = x0X0 = tr(xv) x0
and

{ty, XD X = vXOX = tr(vx) vx .

Thus, tr(xv) = tr(vx). Now it follows that
tr(xu) = Y tr(xu;) = Y tr(ux) = tr(ux) .
1 1
(iii) Let 4, have the same meaning as in the proof of Lemma 4.3. Put

Dix:=ux( ) u)= Y uxu;.

ieAx i,jedx

Since u € § is nilpotent the finite-dimensional operator D, is nilpotent, therefore
trace D, = 0. On the other hand by using Lemma 4.2 we get

trace D, = i’jg‘;k tr(u;) tr(u,) = (igktr(u )2

Consequently,

tr(u) = ;

tr(ui) =0..
ied,

iedx

(iv) It can easily be checked that v e &, implies v* € §; and tr(v*) = T v. There-
fore,

() = 3 eal) = 3 ) = )
for ue@.

(v) The assumption is an easy consequence Of Ty, X*x) = tr(vv*x*x) =
= tr(xv(xv)*) and tr(xv(xv)*) € Sp(xv(xv)*) by Lemma 2.8.
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5. NUCLEAR ELEMENTS

Let MM = L(E) be the algebra of all bounded linear operators on the Banach
space E. An operator U € &(E) is called nuclear if U = Z a;® y;, where a;e E',
y;€ E, and Z la:]l |lvi]] < oo. The two-sided ideal of all nuclear operators is denoted

by N(E). Note that a; ® y; are one-dimensional elements. As you know a nuclea:
operator U € N(E) has a well-defined trace, when the underlying Banach space E or
its dual E’ possesses the approximation property. For more detailed informations the
reader is referred to [8].

The definition of nuclear operators gave rise to the following

Definition 5.1. An element u € M is called nuclear if u = Z u;, wWhere u;€ &,
o0 i=1

and Y [u;]| < 0. We put v(u) = 1nf2 |u:], where the infimum is taken over all

i=1

representations. The class of all nuclear elements is denoted by .

Theorem 5.2. 9% is a two-sided ideal of M with § = N and v is norm on N such
that =
v(xuy) < ||x|| v(u) [y]| forall x,yeM, uef.

Moreover, M is complete with respect to this norm.

Examples 5.3. (i) Let 9 be the algebra £(E). Then u € M is nuclear if and only if u
is a nuclear operator.

(ii) Let M be the algebra I,,. Then N = 1.

(iii) Let M be the algebra of all absolutely summable complex valued functions
with period 2n. Then

+ . + 0 ¢
N ={Y ae™:Y || < 0} (Wiener algebra).
-0 — 00
Theorem 5.4. If u € M, then the operator x — uxu is nuclear.
. w. =)
Proof. Choose a representation u = Z u;, Y |lusf| < oo, u; € ;. Since
i=1

Dx-uxu—Zuxu——Z(aU, u

Lj=1 ihj=1

ioand Jag| Juy] £ fud u]
it follows that

(0 = 3 Jul ol = (E ) < o
Consequently, D, is a nuclear operator.
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Remark 5.5. Even for C*-algebras the converse is not true. Put 9 = [_. Then
u=(1/n)el, and u¢ N (example (ii)) but the operator x — uxu = ((1/n?)¢,),
where x = (&,), is nuclear.

Remark 5.6. By (3.1) for every u € 9 the set of all eigenvalues is either finite or
countable and has no non-zero point of accumulation.

Now we inverstigate certain conditions under which the trace admits an extension
to the nuclear elements.

Theorem 5.7. Let M be a semi-prime Banach algebra having the approximation
property. Then every u € W has a well-defined trace.

o] 0
Proof. Let 0 = Y u;, u;€ &, and ) I[u,” < oo0. Let A4, have the same meaning
i=1 i=1

as in the proof of Lemma 4.3. Put

Dx:= ) uxu; = (iilu,-) x(z uj)=0.

i,jedr Jjedr

Because of ¥(Dy) < (Y ||u;]|)* and the approximation property it follows that
i€ s

0 = trace D, = (Z tr(u;))® .

i€Ax

Therefore,

Let 9 be a semi-prime Banach algebra possessing the following property:

Given u e § and ¢ > 0, then there exists x € &, ]x” <1 + ¢ such that xu = u

or ux = u.

Remark 5.8. If M = £(E), then this property is fulfilled if E or E’ has the metric
approximation property (see [8]).

Theorem 5.9. Let MM be an algebra with the above property. Then every ueN
has a well-defined trace.

n
Proof. Forgivenve Fand e > 0, thereisxe & x = Y x;, ;€ F, x| £ 1 + ¢,
i=1

o
such that xu = u. If v = ) v; is a nuclear representation, with

) + ez Y ol
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then

Itr(v)] = [tr(xv)l = li§1<1""’ v>' =
=13, T ol £ 3 futen)] < (3 Iol) Il S 000+ ) (1 + 9

Thus, |tr(v)| < (v) for ve @
Therefore, the functional v — tr(v) admits a unique extension on %. Furthermore,
if u = Yu; is any nuclear representation, then
i

n 0
tr(u) = limtr( Y u;) = Y tr(u;) .
n i=1 i=1
The most important condition seems to be the following.

Definition 5.10. A semi-prime Banach algebra 9 possesses the quasi-approxima-
tion property (q.a.p.) if for each minimal idempotent g € MM the Banach space Mg
has the approximation property (resp. gI).

Theorem 5.11. (i) Let M = L(E). Then M possesses q.a.p. if and only if E or E"
has the approximation property.

(ii) A commurative Banach algebra M possesses q.a.p..
(iii) A C*-algebra M possesses q.a.p..
Proof. Suppose g € M to be a minimal idempotent.
(i) Clearly by Mq = E (resp. ¢M = E').
(ii) Mg is isomorphic to the complex numbers by Remark 2.3.
(iii) By using Theorem 4.5 (v) it is easy to check that by

(x, ) 1= (Tgqm y*x) for x,yeMgq

is defined an inner product on Mig.
Moreover, from
Ixqq*|* = [l9q*x*xqq*|| = {74qe, x*x> [ qq*|
and

1 1 1
— lxqq*| £ lIxq| = ——— *q| = — *
] ¥ | = [~ Ty |xaq*q| Tl lxqq*|

it follows that
(x,x) = |x|* forall xeMg.

Thus, Mq is a Hilbert space.
Next we prove the main result of this section.

666



Theorem 5.12. Suppose M to be with q.a.p.
(i) Then every u € N has a well-defined trace.
(ii) If u € N is nilpotent, then tr(u) = 0.

Proof. Without loss of generality we can assume 9tg having the approximation
property for each minimal idempotent g € M.

(i) For given u € M we choose a nuclear representation

u =

e

0
up, with Y fu < 0.
i=1
Hence, the series 2 tr(ui) must be convergent. Furthermore, it is enough to show
i

that from ) v; = 0, where v, € & and . ||v;]| < o0 it follows that
i i1

i=1

Ms

tr(v;) = 0 .

i=1

i

The equivalence relation induces a disjoint decomposition A4, of the natural
numbers, such that v; ~ v; for i,je A,. Choose minimal idempotents g, with
g, ~ v; for i € A;. Put w, := Y v; and define an operator L, € £(Mg,) by

ieAx

<

Lix := wXx.
Note that w, € Rt. Applying Lemma 4.2 we obtain L, € 9%(Mg,) and

trace L, = ) tr(v;) .

icdr
Since 0 = () v;) xw;, = wxw, we have w, = 0. This yields
=1
Y tr(v;) = 0

ieAx

and therefore we have
0
0=Y tr(w,) = Y tr(v;) .
k i=1
(ii) If u € R is nilpotent, then L, € N(Mg,), too. Consequently,

0 = trace L, and tr(u) =0.
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6. TRACE FORMULAS

In order to prove the trace formula for finite elements in Banach algebras and to
prove the Lidskij trace formula for nuclear elements in C*-algebras we need some
preparations.

Let 2 be a left (right) ideal of 9 contained in §. Any maximal orthogonal set of
minimal idempotents in 2 has the same cardinality denoted by 6(2) and is called the
order of . Some basic results concerning ideals of finite order are proved in [2].

For any bounded operator T on M the null space N(T) is defined by

N(T)={yeM: Ty = 0}.
The smallest nonnegative integer n such that
N(Tn+1) — N(Tn)

or + oo if no such n exists, is called ascent of T and denoted by oc(T). We do not
assume that M has an identity 1. If 9 does not have an identity, then 1 is symbolic,
but make sense when multiplied by an element of M. We denote Al simply by 2.
The left (right) multiplication operator on 9 determined by A — u is the operator
which takes x € M into Ax — ux € M (resp. Ax — xu € M) and is denoted by L,_,

(resp. R;_,).

Lemma 6.1. (BARNEs [2], p. 499). Let u € R and 4 € Sp(u). Then o« := ofL,_,) =
= o(R;-,) < © and O(N(L;_,)) < .

A proof for semi-prime algebras can be found in [10].

Lemma 6.2. Let M = &(E) be the algebra of all bounded linear operators on
a Banach space E. Let be S € M and 1 € C be an eigenvalue of S with finite algebraic

multiplicity. Then O(N(L}_s)) is equal to the algebraic multiplicity of the eigen-
value A of the operator S.

Proof. Suppose n to be the algebraic multiplicity of the eigenvalue 4, i.e.
n=dim{xeE: (A — S)fx = 0}

for a certain natural number f.

Assume Xy, ..., X, to be any basis of the subspace {x€E: (A — S)f x = 0}.
There exist functionals ay, ..., a, € E such that {x;, ;) = 0y. Put P;:= a; ® x;.
Then P; € N(L _s) are mutually orthogonal minimal idempotents of £(E). Therefore,

n < ON(IA-s) S OV(L—s)) -

On the other hand, if Q; e N(L;_g) arc a maximal system of mutually orthogonal
minimal idempotents, then Q; = b; ® y;, Where b; € E',y;eE,and (AI — S)y; = 0.
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Since the elements y; are linear independent it follows that
O(N(L%_s) < n.

The preceding lemma gives rize that n(4, u) := O(N(L3_,) 1s called the algebraic
multiplicity of the eigenvalue 1 € Spa(u).

Lemma 6.3. Let ue N and /leSp(u), A+ 0. Then there exists an idempotent
n(2,u)
p(A) e N(L;_,), p(A) = Y pdA), pi{A) being mutually orthogonal minimal idem-
i=1 :
potents such that
p(A)x = x forall xeN(L;_,).
The proof can be given in the same way as for Theorem 3.4 (also see [10],
Lemma 4.4).
Throughout this section let A, L;, w, and g, have the same meaning as in the
proof of Theorem 5.12. Recall that n(4, L,) imply the algebraic multiplicity of the

eigenvalue A of the operator L,. If A does not belong to the spectrum of L,, then we
put n(4, L) = 0.

Lemma 6.4. Suppose ue€ N and A€ Sp(u), A = 0. Then
n(A,u) =Y n(i, L) .

k

Proof. Let u € % and choose any representation

=
1l
s

u; with Y [luy] < 0.
i=1

By Lemma 6.3 there is an idempotent p(%) € N(L}_,),

n(A,u

)
p(A)= Y pfA), and p(A)x =x forall xeN(L_,).
i=1

For fixed k we put B, := {i : p; ~ ¢,}. Note that may be B, = 0. We obtain

P('l) = z; Z Pi()“)

ieBy
and
0=(2—uypfA) = (4 —w)pf) for ieB,.

There exist x; € M such that p/(4) x;q; + 0. Since p,(4) x,q, € Mg, are linear in-
dependent it follows that

n(A, L) = card (By).

On the other hand, if for any natural number f there exists z € Mq,, z = xq;, such
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that
O=M-LYz=A-w)fz=(04—-ufz,
then by applying Lemma 4.2 it follows that

{Tpiays XqiYo)
z=pA)z =) plA)xq, =), ——""=pdA) xiq -
( ) ig;‘k ( ) - iEZBk <qus Yo pl(l) xi> ( ) ‘

Therefore, we have

n(A, L) < card (By)
and we obtain

n(4, u) = Y card (By) = 2. n(4, Ly).
k k
Theorem 6.5. (Trace formula for finite elements.) Let u € §. Then
tr(u) = YA, n(4;, u) .
Proof. Since L, € 2(Mqy) is a finite-dimensional operator we have
trace L, = Y A; n(4;, Ly) .
On the other hand Lemma 4.2 yields
trace L, = tr(w;) .
Using Lemma 6.4 we obtain

tr(u) = ;tr(wk) = ;;Ai n(A, L) = }i:li n(2;, u).

Theorem 6.6 (Lidskij trace formula). Suppose M to be a C*-algebra and let
ueN. Then

tr(u) = Xili n(A;, u) .

Proof. For fixed k Mg, is a Hilbert space (Theorem 5.11 (iii)) and L, € R(Mqy).
Lidskij’s trace formula yields

trace L, = Z/li n(A;, L) .

Since trace L, = Y, tr(u;) exists it follows from Lemma 4.2 that there also exists
ieAx
tr(w,) and trace L, = tr(w,). Moreover, the representation u = Y w, is unique.
k

This is an easy consequence of the fact that uxw, = w,xw, for x € M. Using Lemma
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6.4 and that Y [tr(w)| < X uy] < 0 we obtain

te(u) = T te(w) = ¥ T nl, L) = Fhen(lu)

Finally we give a further trace formula for certain nuclear elements.

Recall that for every operator S € Q(E) the approximation numbers are defined by
a,(S) = inf {|S — A : A€ 2(E), rank (4) < n}.
The & -classes are given by
S E):={SeLE):Y a,(S)’ <o} for 0<p< oo
and '

CS(E) := {SeL(E) : lim a,(S) = 0} .
By the definition

oS i= (T alsy}”

we obtain a quasinorm on &,.
Note that S,(E) < R(E) (see [9]).

Recently H. Konig [7] has proved that for the operators of &,(E) the trace
formula is valid. We can give here a partially generalization to Banach algebras.

Definition 6.7. For every element u € M the n-th approximation number is
defined by

a,(u) = inf {|ju ——;Zlu,-ﬂ tu; ey, k< n}.

It is easy to check following properties:

() [u] = ay(u) 2 ay(u) =z ... 2 0 for ueM.
(i) a,(u + v) < a,(u) + |v|| for u, veM.
(iii) a,(tuv) < |t] a,(u) |v]| for t,u,ve M.

Let@,:= {ue M :Y a,u)’ < o} and
opu) := (X an(u)}'
Then ¢, is a quasinorm on S,

Theorem 6.8. Let ue S, N N. Then

tr(u) = Zi“li n(A;, u) .

671



Proof. For given ¢ > 0 and n there exist u; € F such that
Ju = Yu] < afu) + .
With any fixed k it follows from

0w — 2:“:) x| = Jl(u — ;“1) x| = (a,(u) + ¢) [xq.]

that
a, (L) < a,u) + ¢.

Therefore for all n and k we obtain
an(Lk) é an(“) .

ue @, yields L, e S,(Mgq,) for all natural numbers k. Applying the result of H.
Konig [7] we have

trace L, = Y A; n(4;, L) .
Since trace L, exists it follows from Lemma 4.2 that there also exists tr(w,) and

trace L, = tr(w,). .
Since the decomposition u = Y w, is unique and Z tr(wk) is convergent we obtain
k K

tru = Z tr(Wk) = Z'li n(,li, u) .
k i
Motivated by the operator case arizes
Problem 6.9. S, = N?

Problem 6.10. Let u € §. Exists there a representation u = Y. u;, such that ||u] <
=1

< |u| forall i = 1,..., n? If Problem 6.10 is positively solved the Problem 6.9, too.
(see [9]). For commutative Banach algebras immediately follows from Remark 2.3
and the definition of &, that

S, =N and v=o0,.

For C*-algebras the Problem 6.9 is treated in the next section.
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7. C*-ALGEBRAS

Throughout this section M is supposed to be a C*-algebra. Our concern is devoted
to prove the identity of 9 and the trace-class ©; of M.

An element u € M is called compact if the linear operator x — uxu is compact. -
The class of all compact elements is denoted by €. Ylinen shows that € forms a two-
sided ideal which is the closure of & (see [18]). Let u € € and let (4,) be the eigen-
values of u*u, arranged in decreasing order and repeated according to multiplicity.
Put s,(u) := /A, This number is called the n-th singular value of the element u.
Almost all results known from [5] about singular values of compact operators
were proved for dual C*-algebras by WonG [16]. The ideal € is by Corollary 8.3
in [1] a dual C*-algebra. Moreover, if u € € is one-dimensional with respect to €,
then because of uxu = uxuxou = t(xux,) u for all x € M, where x, € € is choosen
such that 7(xo) = 1 it follows that u € &,. Therefore, all results provcd by Wong
for singular values are valid for €. Particularly we obtain that

a,(u) = s, (u) for ue@.
For more informations the reader is referred to [16, 17]. &, is called the trace-class

of M.
In order to prove the next theorem we use the ideas of [18].

Theorem 7.1. Every s € € admits a Schmidt representation, i.e.

0
s = Z Aty s
i=1
where u; € &y, ”u,” =1, and uu? (resp. uiu;) are mutually orthogonal idem-
potents. Moreover,
a,(s) = 2,.

Proof. As you know the C*-algebra 9 is *-isomorphic to a uniformly closed
*-subalgebra of (H). Therefore by polar decomposition of se I we obtain
s = U|s| and ]sl = U*s, where U € £(H) is partially isometric. Since s € €, we have

Is] € €, and then there exists the following spectral decomposition [18] [sl =Y len
i=1

where 4, = A, = ... = 0 and e; are orthogonal minimal hermitian idempotents.

We obtain

with u; := Ue, = (1/1,) se; € §; and |u;| < 1. From |s| = U*U|s| it follows that
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e; = U*Ue; = U*u; and 1 < |u;|. Therefore,

(uu?) (uul) = ueU*uuf = ueu = uuf

and
(uu?) (uu}) = ue,U*Ueu’ = ueeul =0 for i+j.

In the same way it can be shown that uju; are orthogonal minimal idempotents.
By definition is s,(s) = 4, Because of a,(s) = s,(s) we have a,(s) = 4,.

Lemma 7.2. Let (u;)i2; = &, such that uju; (resp. uuy) are mutually orthogonal

idempotents. Then

iKT“"’ )| £ o] forall veg,.

Proof. For w e &, it follows from
[wl* = Twwww*]| = [<o, w] wow*] = [<o, wo] [w]?

that [<z,, w*>| = ||w|* # 0. Therefore

] = [ e[ = [ w0y
(T W ]
We obtain
Kty 02 = [Juwu || = “ut-vu,.(u,»vui)*[[ = |lupupforu}| =
= Ki*[\viﬁl;iﬂ ”u,-vv*ui‘k” = ” ”2 I<T,,: vuU; >l l(‘cu U DD >l

By Theorem 4.5 (v) we have (T, uju;» = 0.
Cauchy inequality yields

% [ 0] = 3 [ ]2 [ 12
i=1

H | =
=< “-11;—” {:Z Ty U u*>}1/2 {Z (Type, UF >}1/z _

” I {<TU‘”’ Z upi P {(Tpom, .iufuJ}l/z =

17 Ul ] ety (ol | Sty s

< |v|| for all natural numbers m .
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Hence,

OZO: [<Tup vD| < |o| foreach ve,.
i=1

Theorem 7.3. S, = N and o, = v.

Proof. Let s € ©,. By Theorem 7.1 s admits a Schmidt representation

We obtain

Ws) £ X 2wl = 34 = Yals) = ai(s) .-

To prove the converse inclusion we consider s € it. Because of Theorem 7.1 there
exists a Schmidt representation

s=YAu;, u;€®, and wuu} (resp. ufu;) are
i

orthogonal idempotents. Moreover, for given ¢ > 0, we can find a nuclear repre-
sentation

= Z.-:Ui’ v;e®, and Z‘: [o:)] (1 + ¢)w(s).

Since ufsuf = e,-U*Se,U* = e;|s| e;U* = Lie;U* = Lu} we have (1, s) = .. (For
notations see proof of Theorem 7.1.) Lemma 7.2 yields

79 = S afs) = T, = ¥ o, Top <
< 3 ¥ o) S 3ol < (149 90).

This proves the assertion.
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