Previous |  Up |  Next

Article

References:
[1] G. Birkhoff: Lattice theory. third edition, Providence 1967. MR 0227053 | Zbl 0153.02501
[2] L. Bukovský: Characterization of generic extensions of models of set theory. Fund. Math. 55 (1973), 35-46. DOI 10.4064/fm-83-1-35-46 | MR 0332477
[3] P. Conrad D. McAlister: The completion of a lattice ordered group. J. Austral. Math. Soc. 9 (1969), 182-208. DOI 10.1017/S1446788700005760 | MR 0249340
[4] Л. Фукс: Частично упорядоченные алгебраические системы. Москва 1965. Zbl 1099.01519
[5] J. Jakubík: Center of а complete lattice. Czech. Math. J. 23 (1973), 125-138. MR 0319831
[6] J. Jakubik: Cantor-Bernstein theorem for lattice ordered groups. Czech. Math. J. 22 (1972), 159-175. MR 0297666 | Zbl 0243.06009
[7] J. Jakubik: Homogeneous lattice ordered groups. Czech. Math. J. 22 (1972), 325 - 337. MR 0314721 | Zbl 0259.06016
[8] J. Jakubík: Generalized Dedekind completion of a lattice ordered group. Czech. Math. J. 28 (1978), 294-311. MR 0552650
[9] K. MacAloon: Consistency results about ordinal definability. Ann. Math. Logic 2 (1971), 449-467. DOI 10.1016/0003-4843(71)90005-2 | MR 0292670
[10] R. S. Pierce: Some questions on Boolean algebras. Proc. Symp. Pure Math. Vol. 2, Lattice theory, Amer. Math. Soc, 1961, 129-140. DOI 10.1090/pspum/002/0138570 | MR 0138570
[11] R. Sikorski: A generalization of theorem of Banach and Cantor-Bernstein. Coll. Math. 1 (1948), 140-144. MR 0027264
[12] F. Šik: Über subdirekte Summen geordneter Gruppen. Czech. M. J. 10 (1960), 400-424 MR 0123626
[13] Ф. Шик: К теории структурно упорядоченных групп. Чех. мат. ж. 6 (1956), 1 - 25. Zbl 0995.90522
[14] В. 3. Byлих: Введение в теорию полуупорядоченных пространств. Москва 1961.
Partner of
EuDML logo