Previous |  Up |  Next

Article

References:
[1] Bose Majumdar N. C.: On the distance set of the Cantor middle third set III. Amer. Math. Monthly 72 (1965), pp. 725-729. DOI 10.1080/00029890.1965.11970598 | MR 0183819
[2] Dasgupta M.: On some properties of the Cantor set and the construction of a class of sets with Cantor set properties. Czechoslovak Mathematical Journal 24 (99), 1974 Praha, pp. 416-423. MR 0366673 | Zbl 0309.28005
[3] Ganguly D. K., Bose Majumdar N. C: On some functions connected with Cantor set. Bull. Math, de la See. Sci. Math, de la R. S. R. (to appear). Zbl 0368.28001
[4] Kinney J. R.: A thin set of lines. Israel J. Math. 8 (1970), pp. 97- 102. DOI 10.1007/BF02771304 | MR 0265534 | Zbl 0213.07605
[5] Randolph J. F.: Distance between points of the Cantor set. Amer. Math. Monthly 47 (1940), pp. 549-551. DOI 10.2307/2303836 | MR 1524942
[6] Steinhaus H.: Nowa vlastnose mnogosci G. Cantora. Wektor (1917), pp. 105-107.
[7] Šalát T.: On the distance set of linear discontinuum I. (Russian), Časopis pro pěstování matematiky 87 (1962), pp. 4-16. MR 0180959
[8] Utz W. R.: The distance set for the Cantor discontinuum. Amer. Math. Monthly 58 (1951) pp. 407-408. DOI 10.2307/2306554 | MR 1527894 | Zbl 0043.05402
[9] Hobson E. W.: The theorey of function of a real variable and the theory of Fourier series. Vol. I, Dover Publications, Inc. p. 243.
Partner of
EuDML logo