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Introduction. It is known [5], [6], [7] that, for any d (0 < d < 1) there exist Cantor
points x and y such that

(1) y—x=d.

It has subsequently been shown by Utz [8] from geometrical considerations that
fo<d<land 1 < Iml < 3 then there exists at least one pair of Cantor points x
and y such that

(2 y=mx-+d.

By putting m = 1, we see that (1) is a particular case of (2). Using the properties of
Kinney’s functions [4], it has been shown recently by M. DASGUPTA (in Czechoslovak
Mathematical Journal, [2]) that given any d there exists at least one pair of Cantor
points x, y such that d = (2y + x)[3 (i.e. every d is a point of trisection of a segment
whose end points are Cantor points).

We now propose to give a more general theorem with the help of Utz’s theorem
[8] from which results due to M. Dasgupta and H. STEINHAUS (and others) follow.

Theorem 1. Given two positive real numbers p and v where p < vand + < u/v =1,
each point d, in 0 < d < 1, divides a segment [x, y] < [0, 1] in the ratio v:p
whose end points x and y are Cantor points.

Proof. Let d be any pointin 0 < d £ v/(u + v). We now choose d’ such that
d' =[(g+v)v]d

Hence d = vd'[(n + v). Since 0 < d < v/(x + v), we have 0 < d’ < 1. We now
choosé m = —p/vin Utz result (2).

Therefore 3 < |m| < 1(<3) and thus y = —(u/v) x + d’ where xe C and y e C
where C represents Cantor middle third set based on the unit interval [0, 1]. Therefore

(3) WHEEE _ 4 or WHE _EF Vo g =W R
v v v n+v
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Taking v/(x + v) < d < 1, we get

1 —

IIA

>1-d>0 or 0<1—d<—*_ L
n+v n+ v n+v

Hence by previous argument, we get x € C, y € C, and

[ —d=20tr p+v—dp+v)=vy+px
n+v

or
(n+v)d=pl = x)+ ¥l = y) = px" + vy’

where x'(= 1 — x)e C, and y'(= 1 — y) e C. Thus

(4) d=Hr v
n+v
where
Y oca<t.
n+v

Taking (3) and (4) together, the required result follows.

Note 1. This theorem is trivially true for d = 0, 1.
M. Dasgupta [2] gave the following theorem:

Each point d in (0 < x < 1) is a point of trisection on a segment of the interval
0 < x £ 1, the two end points of which are Cantor points.

This theorem follows as a corollary of Theorem 1 when u = 1, v = 2.

RANDOLPH [5] and Bose MAJUMDAR [1] have shown that each point of [0, 1] is the
middle point of a pair of Cantor points.

Taking ¢ = v = 1, we observe that Randolph’s abd Bose Majumdar’s result is
a particular case of Theorem 1. '

Theorem 2. Given two positive real numbers y and v where u < vand 1 < u/v <1
and any point d in [0, 1], the aggregate of pairs of points (x,y),0 £ x,y < 1 such
that d = (uf(y) + vf(x))/(n + v) is either finite or has the power c, where f(x) is the
Kinney’s function.

Proof. We shall prove the result by the help of Kinney’s function.
Kinney [4] defined two functions f(x) and V(x) as follows:

Let x be any pointin 0 < x < 1. Then we write,

xl

X = —
i=1 3"

where x; =

Ms

for every i.

I

N = O
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Moreover, we shall have x uniquely represented by replacing any final “1” in it,
with a chain of 2’s.

We write

fz(x) and V(x) =i -Vi()i)

f(x) - 3! =1 3

INgE

i

where fi(x) = 2d(x;, 2) and v/(x) = 25(x;, 1) with the property d(a, b) = 1 if a = b
and &(a, b) = 0 if a =+ b. Since f(x) and V(x) for any x € [0, 1] are, each, either 0
or 2, it follows that f(x) and ¥(x) are both points of the Cantor middle third set C.
It has been shown by D. K. GANGULY and Bose Majumdar [3] that each of Kinney’s
function f(x) and V(x) map the unit interval [0, 1] onto the Cantor middle third
set C and excepting for an enumerable subset of C, every point of C is the image of
continuum number of points x € [0, 1] under the mapping by each of the Kinney’s
function f(x) and V(x).

[Sketch of the proof. Let us take any p € C, where

r=£5 o)

for every i. Then we find a corresponding x € [0, 1] by choosing x = Z(xi/3")
=1
where x; = 2 if ¢; = 2 and x; = 0 or 1 if ¢; = 0 and thus f(x) = Z(c,-/?»i) =

= Y (fix)/37); the power of the set {x} with f(x) = p is obviously finite or 2% (=c)
i=1
911

We have seen in the Theorem 1 above, each point d in [0, 1] is such that there
corresponds a segment [g, p] < [0, 1] satisfying d = (uq + vp)/(n + v) with pe C
and g € C. Now p and ¢ being fixed, satisfying conditions as stated in the Theorem 1,
let us assume that [as shown in [3]] the set {x} = E < [0, 1] is such that p =
= f(x) = f(x') = f(x") = ... where x, x,x",... € E and we also assume that the
set {y} = F = [0, 1]issuch that g = f(y) = f()') = f()) = ... where y, ', y", ... €
€ F. Here d = (uq + vp)|(u + v) = [ f(y) + v f(x)]/(n + v) for any x € E and any
yeE. )

Since E and F (power of the sets E and F respectively) are either each finite or ¢
[3], it follows that the power E x F is ¢ or ¢* (= ¢) [9] or a finite number.

Hence the power of the set {(p, g)} corresponding to a given d e [0, 1] and
a number pfv, where § < pfv < 1, satisfying d = (ug + vp)/(n + v), peC, q€C,
is either ¢ or a finite numbur

Note 2. We could have proved this theorem in similar manner by taking Kinney’s
function V(x).
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