Previous |  Up |  Next

Article

References:
[1] A. H. Clifford, G. B. Preston: The algebraic Theory of Semigroups. Vol. I, Math. Surveys No. 7, Amer. Math. Soc., Providence, R. I., (1961). MR 0132791 | Zbl 0111.03403
[2] S. Lajos: Generalized ideals in semigroups. Acta Sci, Math., 22 (1961) 217-222. MR 0136671 | Zbl 0108.25904
[3] S. Lajos: О Полугруппе Подмножеств Полугруппы. Publ. Math. Debrecen, 11 (1964) 223-226. Zbl 0275.60015
[4] S. Lajos: Note on $(m, n)$-ideals. II, Proc. Japan Acad., 40 (1964) 631 - 632. MR 0172949
[5] S. Lajos: On semigroups that are semilattices of groups. II, Dept. Math. K. Marx Univ. of Economics, Budapest (1971). MR 0318360 | Zbl 0242.20067
[6] S. Lajos: A note on semilattices of groups. Acta Sci. Math., 33 (1972) 315 - 317. MR 0318361 | Zbl 0247.20072
[7] S. Lajos: Theorems on $(1, 1)$-ideals in semigroups. Dept. Math. K. Marx Univ. of Economics, Budapest (1972). MR 0338227 | Zbl 0245.20058
[8] S. Lajos: Characterizations of semilattices of groups. Math. Balkanica, 3 (1973) 310-311. MR 0354914 | Zbl 0287.20059
[9] D. Latorre: On semigroups that are semilattices of groups. Czechoslovak Math. J., 21 (96) (1971) 369-370. MR 0289683 | Zbl 0225.20038
[10] J. Luh: A characterization of regular rings. Proc. Japan Acad., 39 (1964) 741 - 742. MR 0161879
[11] E. C. Ляппин: Полугруппы. Москва, (1960). Zbl 1004.90500
[12] M. Petrich: Introduction to Semigroups. Bell and Howell Company (1973). MR 0393206 | Zbl 0321.20037
[13] M. S. Putcha, J. Weissglass: A semilattice decomposition into semigroups having at most one idempotent. Pacific J. Math., 39 (1971) 225 - 228. DOI 10.2140/pjm.1971.39.225 | MR 0304523 | Zbl 0225.20035
[14] V. S. Ramamurthi: Weakly regular rings. Canad. Math. Bull., 16 (1973) 317-321. DOI 10.4153/CMB-1973-051-7 | MR 0332867 | Zbl 0241.16007
[15] S. Schwarz: A theorem on normal semigroups. Czechoslovak Math. J., 10 (85) (1960) 197-200. MR 0116075 | Zbl 0098.01704
Partner of
EuDML logo