Previous |  Up |  Next

Article

Title: Extension theory for Sobolev spaces on open sets with Lipschitz boundaries (English)
Author: Burenkov, Viktor I.
Language: English
Journal: Nonlinear Analysis, Function Spaces and Applications
Volume: Vol. 6
Issue: 1998
Year:
Pages: 1-49
.
Category: math
.
MSC: 46E35
MSC: 47A30
idZBL: Zbl 0964.46014
idMR: MR1777711
.
Date available: 2009-10-08T09:46:49Z
Last updated: 2012-08-03
Stable URL: http://hdl.handle.net/10338.dmlcz/702471
.
Reference: [1] Adams R. A.: Sobolev spaces.Academic Press, New York 1975. Zbl 0314.46030, MR 0450957
Reference: [2] Babich V. M.: On the extension of functions.(Russian). Uspekhi Mat. Nauk 8 (1953), 111–113. MR 0056675
Reference: [3] Besov O. V., in V. P. Il,’ Kudryavtsev L. D., Lizorkin P. I., skii S. M. Nikol,’ : Embedding theory for classes of differentiable functions of several variables.(Russian). Proc. Sympos. in honour of the 60th birthday of academician S. L. Sobolev, Inst. Mat. Sibirsk. Otdel. Akad. Nauk. SSSR, Nauka, Moscow 1970, 38–63.
Reference: [4] Besov O. V., in V. P. Il,’ skii S. M. Nikol,’ : Integral representation of functions and embedding theorems.(Russian). 1st ed., Nauka, Moscow 1975; 2nd ed., Nauka, Moscow 1996 (Russian); English transl. of 1st ed., Vols. 1, 2, Wiley, 1979. MR 0430771
Reference: [5] Burago, Yu. D., ya V. G. Maz,’ : Some problems of the potential theory and function theory for domains with irregular boundaries.Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklov 3 (1967), 1–152 (Russia); English transl.: Seminars in Math., V. A. Steklov Math. Inst., Leningrad 3 (1969).
Reference: [6] Burenkov V. I.: Some properties of classes of differentiable functions in connection with embedding and extension theorems.(Russian). Ph.D. thesis, Moscow, Steklov Math. Inst. (1966), 145 pp.
Reference: [7] Burenkov V. I.: Embedding and extension theorems for classes of differentiable functions of several variables defined on the whole space.(Russian). Itogi Nauki i Tekhniki: Mat. Anal. 1965, VINITI, Moscow 1966, 71–155; English transl.: Progress in Math. 2, Plenum Press, 1968. MR 0206698
Reference: [8] Burenkov V. I.: On regularized distance.(Russian). Trudy MIREA. Issue 67. Mathematics (1973), 113–117. MR 0499023
Reference: [9] Burenkov V. I.: On the density of infinitely differentiable functions in Sobolev spaces for an arbitrary open set.(Russian). Trudy Mat. Inst. Steklov 131 (1974), 39–50; English transl.: Proc. Steklov Inst. Math. 131 (1974). Zbl 0313.46033, MR 0367642
Reference: [10] Burenkov V. I.: On the extension of functions with preservation and with deterioration of the differential properties.(Russian). Dokl. Akad. Nauk SSSR 224 (1975), 269–272; English transl.: Soviet Math. Dokl. 16 (1975). Zbl 0351.46022, MR 0405083
Reference: [11] Burenkov V. I.: On a certain method for extending differentiable functions.(Russian). Trudy Mat. Inst. Steklov 140 (1976), 27–67; English transl.: Proc. Steklov Inst. Math. 140 (1976).
Reference: [12] Burenkov V. I.: On the extension of functions with preservation of semi-norm.(Russian). Dokl. Akad. Nauk SSSR 228 (1976), 779–782; English transl.: Soviet Math. Dokl. 17 (1976). MR 0412796
Reference: [13] Burenkov V. I.: On partitions of unity.(Russian). Trudy Mat. Inst. Steklov 150 (1979), 24–30; English transl.: Proc. Steklov Inst. Math. 150 (1979). Zbl 0417.46036, MR 0544002
Reference: [14] Burenkov V. I.: Investigation of spaces of differentiable functions with irregular domain.(Russian). D.Sc. thesis, Steklov Math. Inst., Moscow 1982, 312 pp.
Reference: [15] Burenkov V. I.: On estimates of the norms of extension operators.(Russian). 9-th All-Union school on the theory of operators in function spaces. Ternopol. Abstracts (1984), 19–20.
Reference: [16] Burenkov V. I.: Extension of functions with preservation of Sobolev semi-norm.(Russian). Trudy Mat. Inst. Steklov 172 (1985), 81–95; English transl.: Proc. Steklov Inst. Math. 172 (1985). MR 0810420
Reference: [17] Burenkov V. I.: Extension theorems for Sobolev spaces.In: Proc. of the conference “Functional analysis, partial differential equations and applications” in honour of V. Maz’ya, held in Rostock, 31. 08.–4. 09. 1998 (to appear). MR 1747873
Reference: [18] Burenkov V. I.: On sharp constants in the inequalities for the norms of intermediate derivatives on a finite interval, II.(Russian). Trudy Mat. Inst. Steklov 173 (1986), 38–49; English transl.: Proc. Steklov Inst. Math. 173 (1986). MR 0864833
Reference: [19] Burenkov V. I.: Sobolev spaces on domains.B.G. Teubner, Stuttgart 1998. Zbl 0893.46024, MR 1622690
Reference: [20] Burenkov V. I.: Compactness of embeddings for Sobolev and more general spaces and extensions with preservation of some smoothness.To appear.
Reference: [21] Burenkov V. I., Fain B. L.: On the extension of functions in Sobolev spaces from a strip with deteriorations of class.(Russian). Deposited in VINITY Ac. Sci. USSR, No 2511–74 (1975), 12 pp.
Reference: [22] Burenkov V. I., Fain B. L.: On the extension of functions in anisotropic spaces with preservation of class.(Russian). Dokl. Akad. Nauk SSSR 228 (1976), 525–528; English transl.: Soviet Math. Dokl. 17 (1976). MR 0410359
Reference: [23] Burenkov V. I., Fain B. L.: On the extension of functions in anisotropic classes with preservation of the class.(Russian). Trudy Mat. Inst. Steklov 150 (1979), 52–66; English transl.: Proc. Steklov Inst. Math. 150 (1979). MR 0544004
Reference: [24] Burenkov V. I., dman M. L. Gol,’ 1979, On the extension of functions in $L_p$ (Russian). Trudy Mat. Inst. Steklov : 150.(,))., 31–51; English transl.: Proc. Steklov Inst. Math. 150 (197,9 MR 0544003
Reference: [25] Burenkov V. I., Gorbunov A. L.: Sharp estimates for the minimal norm of an extension operator for Sobolev spaces.(Russian). Dokl. Akad. Nauk SSSR 330 (1993), 680–682; English transl.: Soviet Math. Dokl. 47 (1993). MR 1242163
Reference: [26] Burenkov V. I., Gorbunov A. L.: Sharp estimates for the minimal norm of an extension operator for Sobolev spaces.(Russian). Izv. Ross. Akad. Nauk Ser. Mat. 61 (1997), 1–44. MR 1440311
Reference: [27] Burenkov V. I., Kalyabin G. A.: Lower estimates of the norms of extension operators for Sobolev spaces on the halfline.To appear in Math. Nachr. Zbl 0986.46021, MR 1784635
Reference: [28] Burenkov V. I., Popova E. M.: On improving extension operators with the help of the operators of approximation with preservation of the boundary values.(Russian). Trudy Mat. Inst. Steklov 173 (1986), 50–54; English transl.: Proc. Steklov Inst. Math. 173 (1986). MR 0864834
Reference: [29] Burenkov V. I., Schulze B.-W., Tarkhanov N. N.: Extension operators for Sobolev spaces commuting with a given transform.Glasgow Math. J. 40 (1998), 291–296. Zbl 0913.35160, MR 1630199
Reference: [30] Calderón A. P.: Lebesgue spaces of differentiable functions and distributions.Proc. Sympos. Pure Math. IV (1961), 33–49. Zbl 0195.41103, MR 0143037
Reference: [31] Chua S. K.: Extension theorems on weighted Sobolev spaces.Indiana. Univ. Math. 117 (1992), 1027–1076. Zbl 0767.46025, MR 1206339
Reference: [32] Fain B. L.: The extension of functions from an infinite cylinder.(Russian). Trudy Mat. Inst. Steklov 140 (1976), 277–284; English transl.: Proc. Steklov Inst. Math. J. 140 (1979). Zbl 0397.46026, MR 0626997
Reference: [33] Fain B. L.: On extension of functions in Sobolev spaces for irregular domains with preservation of the smoothness exponent.(Russian). Dokl. Akad. Nauk SSSR 285 (1985), 296–301; English transl.: Soviet Math. Dokl. 30 (1985). MR 0820855
Reference: [34] Garofalo N., Nhieu D. M.: Lipschitz continuity, global smoothness approximation and extension theorems for Sobolev functions in Carnot-Carathéodory spaces.Preprint, Purdue Univ. (1996). MR 1631642
Reference: [35] dshtein V. M. Gol,’ : Extension of functions with first generalized derivatives from planar domains.(Russian). Dokl. Akad. Nauk SSSR 257 (1981), 268–271; English transl.: Soviet Math. Dokl. 23 (1981). MR 0610166
Reference: [36] dshtein V. M. Gol,’ Reshetnyak, Yu. G.: Foundations of the theory of functions with generalized derivatives and quasiconformal mappings.(Russian). Nauka, Moscow 1983; English transl.: Reidel, Dordrecht 1989. MR 0738784
Reference: [37] dshtein V. M. Gol,’ Sitnikov V. N.: On extension of functions in the class $W_p^1$ across Hölder boundaries.(Russian). In “Embedding theorems and their applications”. Trudy Semin. S. L. Sobolev, Novosibirsk 1 (1982), 31–43.
Reference: [38] dshtein V. M. Gol,’ yanov S. K. Vodop,’ : Prolongement des fonctions de classe $L_p^1$ et applications quasiconformes.C. R. Acad Sci. Paris Sér. A 290 (1983), 453–456.
Reference: [39] Herron D. A., Koskela P.: Uniform and Sobolev extension domains.Proc. Amer. Math. Soc. 114, 2 (1992), 483–489. Zbl 0757.30022, MR 1075947
Reference: [40] Hestenes M. R.: Extension of the range of a differentiable function.Duke Math. J. 8 (1941), 183–192. Zbl 0024.38602, MR 0003434
Reference: [41] Jones P. W.: Quasiconformal mappings and extendability of functions in Sobolev spaces.Acta Math. 147 (1981), 71–88. Zbl 0489.30017, MR 0631089
Reference: [42] Kalyabin G. A.: The least norm estimates for certain extension operators from convex planar domains.In: Conference in Mathematical Analysis and Applications in Honour of L. I. Hedberg’s Sixtieth Birthday. Abstracts. Linköping 1996, pp. 55–56.
Reference: [43] Konovalov V. N.: A criterion for extension of Sobolev spaces $W_\infty ^{(r)}$ on bounded planar domains.(Russian). Dokl. Akad. Nauk SSSR 289 (1986), 36–39; English transl.: Soviet Math. Dokl. 33 (1986). MR 0852285
Reference: [44] Kudryavtsev L. D., skii S. M. Nikol,’ : Spaces of differentiable functions of several variables and the embedding theorems.(Russian). Contemporary problems in mathematics. Fundamental directions. V. 26 (1988). Analysis – 3. VINITI, Moscow, 5–157. MR 1178111
Reference: [45] Kufner A.: Weighted Sobolev spaces.John Wiley and Sons, Chichester 1985. Zbl 0579.35021, MR 0802206
Reference: [46] Kufner A., John O., Fučík S.: Function spaces.Academia, Prague & Noordhoff International Publishing, Leyden 1977. MR 0482102
Reference: [47] Lieb E. H., Loss M.: Analysis.Amer. Math. Soc. 1997.
Reference: [48] ya V. G. Maz,’ : Sobolev spaces.(Russian). LGU, Leningrad 1984; English transl.: Springer-Verlag, Springer Series in Soviet Mathematics, Berlin 1985. MR 0807364
Reference: [49] ya V. G. Maz,’ Poborchii S. V.: On extension of functions in Sobolev spaces to the exterior of a domain with a peak vertex on the boundary.(Russian). Dokl. Akad. Nauk SSSR 275 (1984), 1066–1069; English transl.: Soviet Math. Dokl. 29 (1984). MR 0745847
Reference: [50] ya V. G. Maz,’ Poborchii S. V.: Extension of functions in Sobolev spaces to the exterior of a domain with a peak vertex on the boundary I.(Russian). Czechoslovak Math. J. 36 (1986), 634–661. MR 0863193
Reference: [51] ya V. G. Maz,’ Poborchii S. V.: Extension of functions in Sobolev spaces to the exterior of a domain with a peak vertex on the boundary II.(Russian). Czechoslovak Math. J. 37 (1987), 128–150. MR 0875135
Reference: [52] ya V. G. Maz,’ Poborchii S. V.: Extension of functions in Sobolev spaces on parameter dependent domains.Math. Nachr. 178 (1996), 5–41. MR 1380702
Reference: [53] ya V. G. Maz,’ Poborchii S. V.: Differentiable functions on bad domains.World Scientific Publishing, Singapore 1997. MR 1643072
Reference: [54] skii S. M. Nikol,’ : On the solutions of the polyharmonic equation by a variational method.(Russian). Dokl. Akad. Nauk SSSR 88 (1953), 409–411.
Reference: [55] skii S. M. Nikol,’ : On embedding, extension and approximation theorems for differentiable functions of several variables.(Russian). Uspekhi Mat. Nauk 16 (1961), 63–114; English transl.: Russian Math. Surveys 16 (1961).
Reference: [56] skii S. M. Nikol,’ : Approximation of functions of several variables and embedding theorems.1st ed., Nauka, Moscow 1969 (Russian); 2nd ed., Nauka, Moscow 1977 (Russian); English transl. of 1st ed., Springer-Verlag, Berlin 1975.
Reference: [57] Popova E. M.: On improving extension operators with the help of the operators of approximation with preservation of the boundary values.(Russian). In: “Function spaces and applications to differential equations”, Peoples’ Friendship University of Russia, Moscow (1992), 154–165.
Reference: [58] Rychkov V. S.: On restrictions and extensions of Besov and Triebel-Lizorkin spaces with respect to Lipschitz domains.To appear. MR 1721827
Reference: [59] Seeley R. T.: Extension of $C^\infty $-functions defined in halfspace.Proc. Amer. Math. Soc. 15 (1964), 625–626. Zbl 0127.28403, MR 0165392
Reference: [60] Sobolev S. L.: Applications of functional analysis in mathematical physics.1st ed.: LGU, Leningrad 1950 (Russian). 2nd ed.: NGU, Novosibirsk 1963 (Russian). 3rd ed.: Nauka, Moscow 1988 (Russian). English translation of 3rd ed.: Translations of Mathematical Monographs, 90, Amer. Math. Soc., Providence, RI 1991. MR 0165337
Reference: [61] Sobolev S. L.: Introduction to the theory of cubature formulae.(Russian). Nauka, Moscow 1974. MR 0478560
Reference: [62] Sobolev S. L., skii S. M. Nikol,’ : Embedding theorems.(Russian). Vol. 1, Proc. Fourth All-Union Math. Congress, 1961, Nauka, Leningrad 1963, 227–242; English transl.: Amer. Math. Soc. Transl. (2), 87 (1970). MR 0171188
Reference: [63] Stein E. M.: Singular integrals and differentiability properties of functions.Princeton Univ. Press, Princeton 1970. Zbl 0207.13501, MR 0290095
Reference: [64] Triebel H.: Theory of function spaces.Birkhäuser, Basel 1983; and Akad. Verlag. Geest & Portig, Leipzig 1983. Zbl 0546.46028, MR 0781540
Reference: [65] Triebel H.: Theory of function spaces. II.Birkhäuser, Basel 1992. Zbl 0763.46025, MR 1163193
Reference: [66] Uspenskii S. V., Demidenko G. V., Perepelkin V. G.: Embedding theorems and their applications to differential equations.(Russian). Nauka, Novosibirsk 1984.
Reference: [67] yanov S. K. Vodop,’ dshtein V. M. Gol,’ Latfullin T. G.: A criterion for extension of functions in class $L_2^1$ from unbounded planar domains.(Russian). Sibirsk. Mat. Zh. 34 (1979), 416–419; English transl.: Siberian Math. J. 34 (1979).
Reference: [68] yanov S. K. Vodop,’ dshtein V. M. Gol,’ Reshetnyak, Yu. G.: On geometric properties of functions with first generalized derivatives.(Russian). Uspekhi Mat. Nauk 34 (1979), no. 1(205), 3–74; English transl.: Russian Math. Surveys 20 (1985).
Reference: [69] Whitney H.: Analytic extension of differentiable functions defined in closed sets.Trans. Amer. Math. Soc. 36 (1934), 63–89. MR 1501735
Reference: [70] Ziemer W. P.: Weakly differentiable functions.Springer-Verlag, New York 1989. Zbl 0692.46022, MR 1014685
Reference: [71] Zobin N. : Whitney’s problem: extendability of functions and intrinsic metric.C. R. Acad. Sci. Paris 320, 1 (1995), 781–786. Zbl 0826.46017, MR 1326682
.

Files

Files Size Format View
NAFSA_098-1998-1_3.pdf 521.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo