[Al] Alvino, A.:
Sulla disuguaglianza di Sobolev in spazi di Lorentz. Boll. Uni. Mat. Ital. 5 (1977), no. 14A, 148–156.
MR 0438106
[ALT] Alvino, A., Lions, P.L., Trombetti, G.:
On optimization problems with prescribed rearrangements. Nonlinear Anal. 13 (1989), 185–220.
MR 0979040 |
Zbl 0678.49003
[Ar] Aronsson, G.:
An integral inequality and plastic torsion. Arch. Rational Mech. Anal. 7 (1989), 23–39.
MR 0540220
[AT] Aronsson, G., Talenti, G.:
Estimating the integral of a function in terms of a distribution function of its gradient. Boll. Uni. Mat. Ital. 5 (1981), no. 18B, 885–894.
MR 0641744 |
Zbl 0476.49030
[Au] Aubin, T.:
Problèmes isopérimetriques et espaces de Sobolev. J. Differential Geom. 11 (1976), 573–598.
MR 0448404 |
Zbl 0371.46011
[Bae] Baernstein, A.:
A unified approach to symmetrization. To appear in a forthcoming volume of Sympos. Math.
Zbl 0830.35005
[Bl] Bliss, G.A.:
An integral inequality. J. London Math. Soc. 5 (1930), 40–46.
MR 1574997
[BLL] Brascamp, H.J., Lieb, E.H., Luttinger, J.M.:
A general rearrangement inequality for multiple integrals. J. Funct. Anal. 17 (1974), 227–237.
MR 0346109 |
Zbl 0286.26005
[BZ] Brothers, J., Ziemer, W.:
Minimal rearrangements of Sobolev functions. J. Reine Angew. Math. 384 (1988), 153–179.
MR 0929981 |
Zbl 0633.46030
[BZa] Burago, Yu.D., Zalgaller, V.A.:
Geometric inequalities. Grundlehren der Mathematischen Wissenschaften, Vol. 285, Springer-Verlag, Berlin – New York, 1988.
MR 0936419 |
Zbl 0633.53002
[Bu] Burton, G.R.:
Variational problems on classes of rearrangements and multiple configurations for steady vortices. Ann. Inst. H. Poincaré Anal. Non Linéaire 6 (1989), 295–319.
MR 0998605 |
Zbl 0677.49005
[Chi] Chiti, G.:
Rearrangements of functions and convergence in Orlicz spaces. Appl. Anal. 9 (1979), 23–27.
MR 0536688 |
Zbl 0424.46023
[CZ] Crowe, J.A., Zweibel, J.A.:
Rearrangements of functions. J. Funct. Anal. 66 (1986), 432–438.
MR 0839110 |
Zbl 0612.46027
[Ehr] Ehrhard, A.:
Inégalités isopérimetriques et intégrales de Dirichlet gaussiennes. Ann. Sci. École Norm. Sup. 17 (1984), 317–332.
MR 0760680 |
Zbl 0546.49020
[EST] Eydeland, A., Spruck, J., Turkington, B.:
Multiconstrained variational problems of nonlinear eigenvalue type: new formulation and algorithms. Math. Comp. 55 (1990), 509–535.
MR 1035931
[Fe] Federer, H.:
Geometric measure theory. Grundlehren der Mathematischen Wissenschaften, Vol. 153, Springer-Verlag, New York, 1969.
MR 0257325 |
Zbl 0176.00801
[FF] Federer, H., Fleming, W.H.:
Normal and integral currents. Ann. of Math. 72 (1960), 458–520.
MR 0123260 |
Zbl 0187.31301
[FP] Ferone, V., Posteraro, M.R.:
Maximization on classes of functions with fixed rearrangement. Differential Integral Equations 4 (1991), 707–718.
MR 1108055 |
Zbl 0734.49002
[GR] Garsia, A.M., Rodemich, E.:
Monotonicity of certain functional under rearrangements. Ann. Inst. Fourier (Grenoble) 24 (1974), 67–116.
MR 0414802
[GN] Giarrusso, E., Nunziante, D.:
Symmetrization in a class of first-order Hamilton-Jacobi equations. Nonlinear Anal. 8 (1984), 289–299.
MR 0739660 |
Zbl 0543.35014
[HLP] Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge Univ. Press, 1964.
[He] Herz, C.: The Hardy-Littlewood maximal theorem. Symposium on harmonic analysis, Univ. of Warwick, 1968.
[Hil] Hilden, K.:
Symmetrization of functions in Sobolev spaces and the isoperimetric inequality. Manuscripta Math. 18 (1976), 215–235.
MR 0409773 |
Zbl 0365.46031
[Ka] Kawohl, B.:
Rearrangements and convexity of level sets in PDE. Lecture Notes in Math., Vol. 1150, Springer-Verlag, Berlin – New York, 1985.
MR 0810619 |
Zbl 0593.35002
[LS] Laurence, P., Stredulinsky, E.:
A new approach to queer differential equations. Comm. Pure Appl. Math. 38 (1985), 333–355.
MR 0784478 |
Zbl 0818.35145
[Le] Levine, H.A.:
An estimate for the best constant in a Sobolev inequality involving three integral norms. Ann. Mat. Pura Appl. 124 (1980), 181–197.
MR 0591555 |
Zbl 0442.46028
[Lb] Lieb, E.:
Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities. Ann. of Math. 118 (1983), 349–374.
MR 0717827 |
Zbl 0527.42011
[Lo2] Lorentz, G.G.:
On the theory of spaces $\Lambda $. Pacific J. Math. 1 (1951), 411–429.
MR 0044740 |
Zbl 0043.11302
[LZ] Luxemburg, W.A.J., Zaanen, A.C.: Notes on Banach function spaces. Indag. Math. 25, 26, 27 (1965, 1966, 1967).
[Maz] Maz, V.G. ’j:
Sobolev spaces. Springer-Verlag, Berlin – New York, 1985.
MR 0817985
[McL] McLeod, J.B.: Rearrangements and extreme values of Dirichlet norms. Unpublished.
[MPF] Mitrinović, D.S., Pecarić, J.E., Fink, A.M.:
Classical and new inequalities in analysis. Kluwer Academic Publishers, 1993.
MR 1220224
[Mrr] Morrey, Ch.B.:
Multiple integrals in the calculus of variations. Grundlehren der Mathematischen Wissenschaften, Vol. 130, Springer-Verlag, New York, 1966.
MR 0202511 |
Zbl 0142.38701
[Mos] Moser, J.:
A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J. 20 (1971), 1077–1092.
MR 0301504
[ON] O, R. ’Nei:
Convolution operators and $L(p,q)$ spaces. Duke Math. J. 30 (1963), 129–142.
MR 0146673
[ONW] O, R. ’Nei, Weiss, G.:
The Hilbert transform and rearrangements of functions. Studia Math. 23 (1963), 189–198.
MR 0160084
[Oss] Ossermann, R.:
The isoperimetric inequality. Bull. Amer. Math. Soc. 84 (1978), 1182–1238.
MR 0500557
[PT] Pelliccia, E., Talenti, G.:
A proof of a logarithmic Sobolev inequality. Calculus of Variations 1 (1993), 237–242.
MR 1261545 |
Zbl 0796.49013
[PS] Pólya, G., Szegö, G.:
Isoperimetric inequalities in mathematical physics. Princeton Univ. Press, 1951.
MR 0043486
[Po] Posteraro, M.R.: Un’osservazione sul riordinamento del gradiente di una funzione. Rend. Acad. Sci. Fis. Mat. Napoli 4 (1988), no. 55, 10 pp.
[Rie] Riesz, F.:
Sur une inégalité intégrale. J. London Math. Soc. 5 (1930), 162–168.
MR 1574064
[So1] Sobolev, S.L.: On a theorem in functional analysis. Mat. Sb. 4 (1938), 471–497.
[So2] Sobolev, S.L.:
Applications of functional analysis in mathematical physics. Translations of Mathematical Monographs, Vol. 7, Amer. Math. Soc., 1963.
MR 0165337 |
Zbl 0123.09003
[S1] Sperner, E.:
Zur Symmetrisierung für Funktionen auf Sphären. Math. Z. 134 (1973), 317–327.
MR 0340558
[S2] Sperner, E.:
Symmetrisierung für Funktionen mehrerer reeller Variablen. Manuscripta Math. 11 (1974), 159–170.
MR 0328000 |
Zbl 0268.26011
[Spi] Spiegel, W.:
Über die Symmetrisierung stetiger Funktionen im Euklidischen Raum. Archiv. Math. (Basel) 24 (1973), 545–551.
MR 0412365 |
Zbl 0274.52011
[SW] Stein, E.M., Weiss, G.:
Introduction to Fourier analysis on Euclidean spaces. Princeton Mathematical Series, No. 32, Princeton Univ. Press, Princeton, N. J., 1971.
MR 0304972 |
Zbl 0232.42007
[Ta1] Talenti, G.:
Best constant in Sobolev inequality. Ann. Mat. Pura Appl. 110 (1976), 353–372.
MR 0463908 |
Zbl 0353.46018
[Ta2] Talenti, G.:
Elliptic equations and rearrangements. Ann. Scuola Norm. Sup. Pisa 3 (1976), 697–718.
MR 0601601 |
Zbl 0341.35031
[Ta3] Talenti, G.:
Rearrangements and partial differential equations. Inequalities (Birmingham, 1987), Lecture Notes in Pure and Appl. Math., Vol. 129, W.N. Everitt (ed.), Dekker, New York, 1991, pp. 211–230.
MR 1112579
[Ta4] Talenti, G.:
An inequality between $u^*$ and $|\text{grad $u|^*$}$. General Inequalities, 6 (Oberwolfach, 1990), Internat. Ser. Numer. Math., Vol. 103, W. Walter (ed.), Birkhäuser, Basel, 1992, pp. 175–182.
MR 1213004 |
Zbl 0783.26015
[Ta5] Talenti, G.:
The standard isoperimetric theorem. Handbook of Convex Geometry, P.M. Gruber & J.M. Wills (eds.), Elsevier, 1993, pp. 75–123.
MR 1242977 |
Zbl 0799.51015
[Ta6] Talenti, G.:
On functions whose gradients have a prescribed rearrangement. Inequalities and Applications, World Scientific Publishing Co., to appear.
MR 1299585 |
Zbl 0886.49009
[Zie] Ziemer, W.P.:
Weakly differentiable functions. Graduate Texts in Math., Vol. 120, Springer-Verlag, New York – Berline – Heidelberg – London – Paris – Tokyo – Hong Kong, 1989.
MR 1014685 |
Zbl 0692.46022