Previous |  Up |  Next

Article

Title: Local accuracy in finite element analysis using curved isoparametric elements (English)
Author: Saxena, Pranjal
Author: Upadhyay, Chandra Shekhar
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 70
Issue: 2
Year: 2025
Pages: 257-292
Summary lang: English
.
Category: math
.
Summary: The finite element method (FEM) is popularly used for numerically approximating PDE(s) over complicated domains due to its rich mathematical background, versatility, and ease of implementation. In this article, we investigate one of its important features, i.e., the approximation of PDE(s) over nonpolygonal Lipschitz domains by higher-order simplicial elements in 2D and 3D. This important issue is not well understood and often ignored by engineers due to its mathematical complexity, i.e., the FEM approximation of curved domains results in inexact boundary conditions, which is a variational crime. This article explores the role of approximation at curved boundaries. Further, the effect of incompleteness of the approximation space also contributes to the error induced in the curved elements. A simple benchmark test for errors is proposed. Tests are conducted for subparametric and isoparametric approximations. Comparison with isogeometric analysis (IGA) is also presented to highlight the basic differences and advantages of isoparametric elements. (English)
Keyword: curved boundary
Keyword: error estimate
Keyword: isoparametric FEM
Keyword: isogeometric analysis
Keyword: patch test
Keyword: local convergence
MSC: 65-02
MSC: 65M60
MSC: 65N30
DOI: 10.21136/AM.2025.0049-25
.
Date available: 2025-05-26T12:18:34Z
Last updated: 2025-06-02
Stable URL: http://hdl.handle.net/10338.dmlcz/152982
.
Reference: [1] Agrawal, V., Gautam, S. S.: IGA: A simplified introduction and implementation details for finite element users.J. Inst. Engineers (India), Ser. C 100 (2019), 561-585. 10.1007/s40032-018-0462-6
Reference: [2] Argyris, J. H., Scharpf, D. W.: A sequel to Technical Note 13: The curved tetrahedronal and triangular elements TEC and TRIC for the matrix displacement method.Aeronaut. J. 73 (1969), 55-65. 10.1017/s0001924000053574
Reference: [3] Arnold, D. N., Boffi, D., Falk, R. S.: Approximation by quadrilateral finite elements.Math. Comput. 71 (2002), 909-922. Zbl 0993.65125, MR 1898739, 10.1090/s0025-5718-02-01439-4
Reference: [4] Babuška, I.: The stability of the domain of definition with respect to basic problems of the theory of partial differential equations, especially with respect to the theory of elasticity. II.Czech. Math. J. 11 (1961), 165-203 Russian. Zbl 0126.11401, MR 0125326, 10.21136/cmj.1961.100453
Reference: [5] Babuška, I., Strouboulis, T.: The Finite Element Method and Its Reliability.Oxford University Press, Oxford (2001). Zbl 0995.65501, MR 1857191, 10.1093/oso/9780198502760.001.0001
Reference: [6] Bartels, S., Carstensen, C., Hecht, A.: P2Q2Iso2D=2D isoparametric FEM in Matlab.J. Comput. Appl. Math. 192 (2006), 219-250. Zbl 1091.65112, MR 2228811, 10.1016/j.cam.2005.04.032
Reference: [7] Berger, A. E.: Error Estimates for the Finite Element Method: Ph.D. Thesis.Massachusetts Institute of Technology, Cambridge (1972). MR 2940236
Reference: [8] Berger, A. E.: Two types of piecewise quadratic spaces and their order of accuracy for Poisson's equation.The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations Academic Press, New York (1972), 757-761. Zbl 0282.65078, MR 0416064, 10.1016/b978-0-12-068650-6.50033-2
Reference: [9] Berger, A. E.: $L^2$ error estimates for finite elements with interpolated boundary conditions.Numer. Math. 21 (1973), 345-349. Zbl 0287.65060, MR 0343655, 10.1007/bf01436388
Reference: [10] Berger, A. E., Scott, R., Strang, G.: Approximate boundary conditions in the finite element method.Symposia Mathematica. Vol. X Academic Press, London (1972), 295-313. Zbl 0266.73050, MR 0403258
Reference: [11] Bernardi, C.: Optimal finite-element interpolation on curved domains.SIAM J. Numer. Anal. 26 (1989), 1212-1240. Zbl 0678.65003, MR 1014883, 10.1137/0726068
Reference: [12] Blair, J. J.: Approximate Solution of Elliptic and Parabolic Boundary Value Problems: Ph.D. Thesis.University of California, Berkeley (1970). MR 2619649
Reference: [13] Blair, J. J.: Bounds for the change in the solutions of second order elliptic PDE's when the boundary is perturbed.SIAM J. Appl. Math. 24 (1973), 277-285. Zbl 0252.35021, MR 0317557, 10.1137/0124029
Reference: [14] Blair, J. J.: Higher order approximations to the boundary conditions for the finite element method.Math. Comput. 30 (1976), 250-262. Zbl 0342.65068, MR 0398123, 10.2307/2005966
Reference: [15] Botti, L.: Influence of reference-to-physical frame mappings on approximation properties of discontinuous piecewise polynomial spaces.J. Sci. Comput. 52 (2012), 675-703. Zbl 1255.65222, MR 2948713, 10.1007/s10915-011-9566-3
Reference: [16] Brenner, S. C., Scott, L. R.: The Mathematical Theory of Finite Element Methods.Texts in Applied Mathematics 15. Springer, New York (2008). Zbl 1135.65042, MR 2373954, 10.1007/978-0-387-75934-0
Reference: [17] Chessa, J.: Programing the finite element method with Matlab.Available at https://www.math.purdue.edu/ {caiz/math615/matlab_fem.pdf} (2002).
Reference: [18] Ciarlet, P. G., Raviart, P.-A.: Interpolation theory over curved elements, with applications to finite element methods.Computer Methods Appl. Mech. Engin. 1 (1972), 217-249. Zbl 0261.65079, MR 0375801, 10.1016/0045-7825(72)90006-0
Reference: [19] Ciarlet, P. G., Raviart, P.-A.: The combined effect of curved boundaries and numerical integration in isoparametric finite element methods.The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations Academic Press, New York (1972), 409-474. Zbl 0262.65070, MR 0421108, 10.1016/b978-0-12-068650-6.50020-4
Reference: [20] Cottrell, J. A., Hughes, T. J. R., Bazilevs, Y.: Isogeometric Analysis: Toward Integration of CAD and FEA.John Wiley & Sons, Hoboken (2009). Zbl 1378.65009, MR 3618875, 10.1002/9780470749081
Reference: [21] Dey, S.: Curvilinear Mesh generation in 3D.Proceedings of the 8th International Meshing Roundtable South Lake Tahoe, California, USA (1999), 407-417.
Reference: [22] Ergatoudis, I., Irons, B. M., Zienkiewicz, O. C.: Curved, isoparametric, `quadrilateral' elements for finite element analysis.Int. J. Solids Struct. 4 (1968), 31-42. Zbl 0152.42802, 10.1016/0020-7683(68)90031-0
Reference: [23] Fortunato, M., Persson, P.-O.: High-order unstructured curved mesh generation using the Winslow equations.J. Comput. Phys. 307 (2016), 1-14. Zbl 1352.65607, MR 3448195, 10.1016/j.jcp.2015.11.020
Reference: [24] Geuzaine, C., Johnen, A., Lambrechts, J., Remacle, J.-F., Toulorge, T.: The generation of valid curvilinear meshes.IDIHOM: Industrialization of High-Order Methods -- A Top-Down Approach Notes on Numerical Fluid Mechanics and Multidisciplinary Design 128. Springer, Cham (2015), 15-39. 10.1007/978-3-319-12886-3_2
Reference: [25] Geuzaine, C., Remacle, J.-F.: Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities.Int. J. Numer. Methods Eng. 79 (2009), 1309-1331. Zbl 1176.74181, MR 2566786, 10.1002/nme.2579
Reference: [26] Hughes, T. J. R., Cottrell, J. A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement.Comput. Methods Appl. Mech. Eng. 194 (2005), 4135-4195. Zbl 1151.74419, MR 2152382, 10.1016/j.cma.2004.10.008
Reference: [27] Hussain, F., Karim, M. S., Ahamad, R.: Appropriate Gaussian quadrature formulae for triangles.Int. J. Appl. Math. Comput. 4 (2012), 24-38.
Reference: [28] Johnen, A., Remacle, J.-F., Geuzaine, C.: Geometrical validity of curvilinear finite elements.J. Comput. Phys. 233 (2013), 359-372. MR 3000936, 10.1016/j.jcp.2012.08.051
Reference: [29] Johnen, A., Remacle, J.-F., Geuzaine, C.: Geometrical validity of high-order triangular finite elements.Eng. Comput. (Lond.) 30 (2014), 375-382. MR 3000936, 10.1007/s00366-012-0305-7
Reference: [30] Jordan, W. B.: Plane Isoparametric Structural Element.Knolls Atomic Power Laboratory, New York (1970). 10.2172/4157041
Reference: [31] Lenoir, M.: Optimal isoparametric finite elements and error estimates for domains involving curved boundaries.SIAM J. Numer. Anal. 23 (1986), 562-580. Zbl 0605.65071, MR 0842644, 10.1137/0723036
Reference: [32] Luo, X., Shephard, M. S., Remacle, J.-F.: The influence of geometric approximation on the accuracy of high order methods.Available at https://www.researchgate.net/publication/228599667 (2002), 11 pages.
Reference: [33] McLeod, R., Mitchell, A. R.: The construction of basis functions for curved elements in the finite element method.J. Inst. Math. Appl. 10 (1972), 382-393. Zbl 0254.65071, MR 0440959, 10.1093/imamat/10.3.382
Reference: [34] McLeod, R. J. Y., Mitchell, A. R.: The use of parabolic arcs in matching curved boundaries in the finite element method.J. Inst. Math. Appl. 16 (1975), 239-246. Zbl 0308.65065, MR 0400747, 10.1093/imamat/16.2.239
Reference: [35] Minakowski, P., Richter, T.: Finite element error estimates on geometrically perturbed domains.J. Sci. Comput. 84 (2020), Article ID 30, 19 pages. Zbl 1458.65152, MR 4127419, 10.1007/s10915-020-01285-y
Reference: [36] Mitchell, A. R., Phillips, G., Wachspress, E.: Forbidden shapes in the finite element method.J. Inst. Math. Appl. 8 (1971), 260-269. Zbl 0229.65082, MR 0292262, 10.1093/imamat/8.2.260
Reference: [37] Moxey, D., Sastry, S. P., Kirby, R. M.: Interpolation error bounds for curvilinear finite elements and their implications on adaptive mesh refinement.J. Sci. Comput. 78 (2019), 1045-1062. Zbl 1417.65207, MR 3918679, 10.1007/s10915-018-0795-6
Reference: [38] Nguyen, V. P., Anitescu, C., Bordas, S. P. A., Rabczuk, T.: Isogeometric analysis: An overview and computer implementation aspects.Math. Comput. Simul. 117 (2015), 89-116. Zbl 1540.65492, MR 3372009, 10.1016/j.matcom.2015.05.008
Reference: [39] Piegl, L., Tiller, W.: The $\mathcal{N}\mathcal{U}\mathcal{R}\mathcal{B}\mathcal{S}$ Book.Monographs in Visual Communication. Springer, Berlin (1995). Zbl 0828.68118, 10.1007/978-3-642-97385-7
Reference: [40] Poya, R., Sevilla, R., Gil, A. J.: A unified approach for a posteriori high-order curved mesh generation using solid mechanics.Comput. Mech. 58 (2016), 457-490. Zbl 1398.74472, MR 3533501, 10.1007/s00466-016-1302-2
Reference: [41] Rektorys, K.: Variational Methods in Mathematics, Science and Engineering.D. Reidel, Dordrecht (1977). Zbl 0371.35002, MR 0487653, 10.1007/978-94-011-6450-4
Reference: [42] Rogers, D. F.: An Introduction to NURBS: With Historical Perspective.Elsevier, Amsterdam (2000). 10.1016/b978-1-55860-669-2.x5000-3
Reference: [43] Ruiz-Gironés, E., Sarrate, J., Roca, X.: Generation of curved high-order meshes with optimal quality and geometric accuracy.Procedia Eng. 163 (2016), 315-327. 10.1016/j.proeng.2016.11.108
Reference: [44] Ruiz-Gironés, E., Sarrate, J., Roca, X.: Measuring and improving the geometric accuracy of piece-wise polynomial boundary meshes.J. Comput. Phys. 443 (2021), Article ID 110500, 22 pages. Zbl 07515413, MR 4273818, 10.1016/j.jcp.2021.110500
Reference: [45] Sastry, S. P., Kirby, R. M.: On interpolation errors over quadratic nodal triangular finite elements.Proceedings of the 22nd International Meshing Roundtable Springer, Cham (2014), 349-366. 10.1007/978-3-319-02335-9_20
Reference: [46] Scott, L. R.: Finite-Element Techniques for Curved Boundaries: Ph.D. Thesis.Massachusetts Institute of Technology, Cambridge (1973). MR 2940387
Reference: [47] Scott, L. R.: Interpolated boundary conditions in the finite element method.SIAM J. Numer. Anal. 12 (1975), 404-427. Zbl 0357.65082, MR 0386304, 10.1137/0712032
Reference: [48] Sevilla, R., Fernández-Méndez, S.: Numerical integration over 2D NURBS-shaped domains with applications to NURBS-enhanced FEM.Finite Elem. Anal. Des. 47 (2011), 1209-1220. MR 2817724, 10.1016/j.finel.2011.05.011
Reference: [49] Sevilla, R., Fernández-Méndez, S., Huerta, A.: NURBS-enhanced finite element method.European Conference on Computational Fluid Dynamics, ECCOMAS CFD 2006 Delft University of Technology, Delft (2006), 1-13. MR 2455923
Reference: [50] Sevilla, R., Fernández-Méndez, S., Huerta, A.: NURBS-enhanced finite element method for Euler equations.Int. J. Numer. Methods Fluids 57 (2008), 1051-1069. Zbl 1140.76023, MR 2435082, 10.1002/fld.1711
Reference: [51] Sevilla, R., Fernández-Méndez, S., Huerta, A.: NURBS-enhanced finite element method (NEFEM).Int. J. Numer. Methods Eng. 76 (2008), 56-83. Zbl 1162.65389, MR 2455923, 10.1002/nme.2311
Reference: [52] Sevilla, R., Fernández-Méndez, S., Huerta, A.: Comparison of high-order curved finite elements.Int. J. Numer. Methods Eng. 87 (2011), 719-734. Zbl 1242.65244, MR 2858254, 10.1002/nme.3129
Reference: [53] Sevilla, R., Fernández-Méndez, S., Huerta, A.: 3D NURBS-enhanced finite element method (NEFEM).Int. J. Numer. Methods Eng. 88 (2011), 103-125. Zbl 1242.78032, MR 2835747, 10.1002/nme.3164
Reference: [54] Sevilla, R., Fernández-Méndez, S., Huerta, A.: NURBS-enhanced finite element method (NEFEM): A seamless bridge between CAD and FEM.Arch. Comput. Methods Eng. 18 (2011), 441-484. MR 2851386, 10.1007/s11831-011-9066-5
Reference: [55] Strang, G.: Variational crimes in the finite element method.The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations Academic Press, New York (1972), 689-710. Zbl 0264.65068, MR 0413554, 10.1016/b978-0-12-068650-6.50030-7
Reference: [56] Strang, G., Berger, A. E.: The change in solution due to change in domain.Partial Differential Equations Proceedings of Symposia in Pure Mathematics 23. AMS, Providence (1973), 199-205. Zbl 0259.35020, MR 0337023, 10.1090/pspum/023/0337023
Reference: [57] Szabó, B., I.\.Babuška: Introduction to Finite Element Analysis: Formulation, Verification and Validation.John Wiley & Sons, Hoboken (2011). Zbl 1410.65003, MR 1164869, 10.1002/9781119993834
Reference: [58] Xie, Z., Sevilla, R., Hassan, O., Morgan, K.: The generation of arbitrary order curved meshes for 3D finite element analysis.Comput. Mech. 51 (2013), 361-374. MR 3029066, 10.1007/s00466-012-0736-4
Reference: [59] Xue, D.: Control of Geometry Error in $hp$ Finite Element (FE) Simulations of Electromagnetic (EM) Waves: Ph.D. Thesis.The University of Texas at Austin, Austin (2005). MR 2707661
Reference: [60] Xue, D., Demkowicz, L.: Control of geometry induced error in $hp$ finite element (FE) simulations. I. Evaluation of FE error for curvilinear geometries.Int. J. Numer. Anal. Model. 2 (2005), 283-300. Zbl 1073.65122, MR 2112649
Reference: [61] Zienkiewicz, O. C., Taylor, R. L.: The finite element patch test revisited: A computer test for convergence, validation and error estimates.Comput. Methods Appl. Mech. Eng. 149 (1997), 223-254. Zbl 0918.73134, MR 1486242, 10.1016/s0045-7825(97)00085-6
Reference: [62] Zlámal, M.: A finite element procedure of the second order of accuracy.Numer. Math. 14 (1970), 394-402. Zbl 0209.18002, MR 0256577, 10.1007/bf02165594
Reference: [63] Zlámal, M.: Curved elements in the finite element method. I.SIAM J. Numer. Anal. 10 (1973), 229-240. Zbl 0285.65067, MR 0395263, 10.1137/0710022
Reference: [64] Zlámal, M.: The finite element method in domains with curved boundaries.Int. J. Numer. Methods Eng. 5 (1973), 367-373. Zbl 0254.65073, MR 0395262, 10.1002/nme.1620050307
Reference: [65] Zlámal, M.: Curved elements in the finite element method. II.SIAM J. Numer. Anal. 11 (1974), 347-362. Zbl 0277.65064, MR 0343660, 10.1137/0711031
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo