Title: | Non-finitely generated bigraded local cohomology modules (English) |
Author: | Rahimi, Ahad |
Language: | English |
Journal: | Czechoslovak Mathematical Journal |
ISSN: | 0011-4642 (print) |
ISSN: | 1572-9141 (online) |
Volume: | 75 |
Issue: | 2 |
Year: | 2025 |
Pages: | 669-679 |
Summary lang: | English |
. | |
Category: | math |
. | |
Summary: | Let $\Bbbk $ be a field, and let $S=\Bbbk [x_1, \dots , x_m, y_1, \dots , y_n]$ denote a standard bigraded polynomial ring over $\Bbbk $. Consider $M$, a finitely generated bigraded $S$-module, and set $Q=\langle y_1, \dots , y_n \rangle $. Assume that there exists $\frak p \in {\rm Ass}_S M$ such that ${\rm cd}(Q, S/\frak p)=j>0$. We demonstrate that ${\rm H}^j_{Q}(M)$ is not finitely generated. Furthermore, we explore a more general version of this result. (English) |
Keyword: | associated prime |
Keyword: | bigraded module |
Keyword: | cohomological dimension |
Keyword: | finiteness dimension |
Keyword: | maximal depth |
Keyword: | local cohomology |
MSC: | 13C15 |
MSC: | 13D45 |
MSC: | 16W50 |
DOI: | 10.21136/CMJ.2025.0389-24 |
. | |
Date available: | 2025-05-20T11:51:04Z |
Last updated: | 2025-05-26 |
Stable URL: | http://hdl.handle.net/10338.dmlcz/152965 |
. | |
Reference: | [1] Brodmann, M. P., Sharp, R. Y.: Local Cohomology: An Algebraic Introduction with Geometric Applications.Cambridge Studies in Advanced Mathematics 136. Cambridge University Press, Cambridge (2013). Zbl 1263.13014, MR 3014449, 10.1017/CBO9780511629204 |
Reference: | [2] Bruns, W., Herzog, J.: Cohen-Macaulay Rings.Cambridge Studies in Advanced Mathematics 39. Cambridge University Press, Cambridge (1998). Zbl 0909.13005, MR 1251956, 10.1017/CBO9780511608681 |
Reference: | [3] Capani, A., Niesi, G., Robbiano, L.: CoCoA: A system for Computations in Commutative Algebra.Available at http://cocoa.dima.unige.it. |
Reference: | [4] Chardin, M., Jouanolou, J.-P., Rahimi, A.: The eventual stability of depth, associated primes and cohomology of a graded module.J. Commut. Algebra 5 (2013), 63-92. Zbl 1275.13014, MR 3084122, 10.1216/JCA-2013-5-1-63 |
Reference: | [5] Dibaei, M. T., Vahidi, A.: Torsion functors of local cohomology modules.Algebr. Represent. Theory 14 (2011), 79-85. Zbl 1213.13035, MR 2763293, 10.1007/s10468-009-9177-y |
Reference: | [6] Herzog, J., Popescu, D., Vladoiu, M.: Stanley depth and size of a monomial ideal.Proc. Am. Math. Soc. 140 (2012), 493-504. Zbl 1234.13013, MR 2846317, 10.1090/S0002-9939-2011-11160-2 |
Reference: | [7] Jahangiri, M., Rahimi, A.: Relative Cohen-Macaulayness and relative unmixedness of bigraded modules.J. Commut. Algebra 4 (2012), 551-575. Zbl 1266.13011, MR 3053452, 10.1216/JCA-2012-4-4-551 |
Reference: | [8] Matsumura, H.: Commutative Ring Theory.Cambridge Studies in Advanced Mathematics 8. Cambridge University Press, Cambridge (1989). Zbl 0666.13002, MR 1011461, 10.1017/CBO9781139171762 |
Reference: | [9] Pourghobadian, P., Divaani-Aazar, K., Rahimi, A.: Relative homological rings and modules.(to appear) in Rocky Mt. J. Math. |
Reference: | [10] Rahimi, A.: Relative Cohen-Macaulayness of bigraded modules.J. Algebra 323 (2010), 1745-1757. Zbl 1184.13053, MR 2588136, 10.1016/j.jalgebra.2009.11.026 |
Reference: | [11] Rahimi, A.: Sequentially Cohen-Macaulayness of bigraded modules.Rocky Mt. J. Math. 47 (2017), 621-635. Zbl 1401.13032, MR 3635377, 10.1216/RMJ-2017-47-2-621 |
Reference: | [12] Rahimi, A.: Maximal depth property of bigraded modules.Rend. Circ. Mat. Palermo (2) 70 (2021), 947-958. Zbl 1473.13007, MR 4286007, 10.1007/s12215-020-00538-x |
Reference: | [13] Villarreal, R. H.: Monomial Algebras.Monographs and Research Notes in Mathematics. CRC Press, Boca Raton (2015). Zbl 1325.13004, MR 3362802, 10.1201/b18224 |
. |
Fulltext not available (moving wall 24 months)