Previous |  Up |  Next

Article

MSC: 05-02
Full entry | Fulltext not available (moving wall 12 months)      Feedback
Summary:
V článku se seznámíme s Franklovou hypotézou, která říká, že všechny konečné systémy množin uzavřené na sjednocení obsahují prvek, který patří alespoň do poloviny všech množin v systému. Rozebereme předpoklady hypotézy, základní poznatky, ekvivalentní formulace, vybrané známé částečné výsledky a výsledky týkající se malých systémů množin.
References:
[1] Alweiss, R., Huang, B., Sellke, M.: Improved lower bound for Frankl’s union-closed sets conjecture. Electron. J. Combin. 31 (2024), article no. 3.35. DOI 10.37236/12232 | MR 4798522
[2] Balla, I., Bollobás, B., Eccles, T.: Union-closed families of sets. J. Combin. Theory Ser. A 120 (2013), 531–544. DOI 10.1016/j.jcta.2012.10.005 | MR 3007135
[3] Bošnjak, I., Marković, P.: The 11-element case of Frankl’s conjecture. Electron. J. Combin. 15 (2008), paper no. R88. DOI 10.37236/812 | MR 2426151
[4] Bruhn, H., Charbit, P., Schaudt, O., Telle, J. A.: The graph formulation of the union-closed sets conjecture. European J. Combin. 43 (2015), 210–219. DOI 10.1016/j.ejc.2014.08.030 | MR 3266293
[5] Bruhn, H., Schaudt, O.: The journey of the union-closed sets conjecture. Graphs Combin. 31 (2015), 2043–2074. DOI 10.1007/s00373-014-1515-0 | MR 3417215
[6] Cambie, S.: Better bounds for the union-closed sets conjecture using the entropy approach. Dostupné z: https://arxiv.org/abs/2212.12500
[7] Cambie, S.: Progress on the union-closed conjecture and offsprings in winter 2022–2023. Nieuw Arch. Wiskd. (5) 24 (2023), 219–224. MR 4694958
[8] Frankl, P.: Extremal set systems. In: Graham, R. L., Grötschel, M., Lovász, L. (eds.): Handbook of combinatorics, Elsevier, 1995, 1293–1329. MR 1373680
[9] Gilmer, J.: A constant lower bound for the union-closed sets conjecture. Dostupné z: https://arxiv.org/abs/2211.09055
[10] Chase, Z., Lovett, S.: Approximate union closed conjecture. Dostupné z: https://arxiv.org/abs/2211.11689
[11] Chvátal, V.: Linear programming. W. H. Freeman, 1983. MR 0717219
[12] Knill, E.: Graph generated union-closed families of sets. Dostupné z: https://arxiv.org/abs/math/9409215
[13] Koňařík, J.: Union-closed sets conjecture and the strength of constraints in linear programming. Bakalářská práce. Západočeská univerzita v Plzni, 2024. Dostupné z: http://hdl.handle.net/11025/57294
[14] Lo Faro, G.: A note on the union-closed sets conjecture. J. Austral. Math. Soc. Ser. A 57 (1994), 230–236. DOI 10.1017/S1446788700037526 | MR 1288674
[15] Lo Faro, G.: Union-closed sets conjecture: improved bounds. J. Combin. Math. Combin. Comput. 16 (1994), 97–102. MR 1301213
[16] Marić, F., Vučković, B., Živković, M.: Fully automatic, verified classification of all Frankl-complete (FC(6)) set families. Dostupné z: https://arxiv.org/abs/1902.08765
[17] Marković, P.: An attempt at Frankl’s conjecture. Publ. Inst. Math. (Beograd) 81 (2007), 29–43. DOI 10.2298/PIM0795029M | MR 2401312
[18] Morris, R.: FC-families and improved bounds for Frankl’s conjecture. European J. Combin. 27 (2006), 269–282. DOI 10.1016/j.ejc.2004.07.012 | MR 2199779
[19] Pebody, L.: Extension of a method of Gilmer. Dostupné z: https://arxiv.org/abs/2211.13139
[20] Poonen, B.: Union-closed families. J. Combin. Theory Ser. A 59 (1992), 253–268. DOI 10.1016/0097-3165(92)90068-6 | MR 1149898
[21] Reinhold, J.: Frankl’s conjecture is true for lower semimodular lattices. Graphs Combin. 16 (2000), 115–116. DOI 10.1007/s003730050008 | MR 1750455
[22] Sarvate, D. G., Renaud, J.-C.: On the union-closed sets conjecture. Ars Combin. 27 (1989), 149–154. MR 0989460
[23] Sawin, W.: An improved lower bound for the union-closed set conjecture. Dostupné z: https://arxiv.org/abs/2211.11504
[24] Vaughan, T. P.: Families implying the Frankl conjecture. European J. Combin. 23 (2002), 851–860. DOI 10.1006/eujc.2002.0586 | MR 1932685
[25] Vučković, B., Živković, M.: The 12-element case of Frankl’s conjecture. IPSI BgD Transactions on Internet Research 13 (2017), 65–71.
[26] Wójcik, P.: Density of union-closed families. Discrete Math. 105 (1992), 259–267. DOI 10.1016/0012-365X(92)90148-9 | MR 1180209
Partner of
EuDML logo