[1] Achache, M.:
A new primal-dual path-following method for convex quadratic programming. Comput. Appl. Math. 25 (2006), 1, 97-110.
DOI |
MR 2267615
[2] Alizadeh, F.:
Interior point methods in semidefinite programming with applications to combinatorial optimization. SIAM J. Optim. 5 (1995), 13-51.
DOI |
MR 1315703
[3] Bai, Y. Q., Roos, C.:
A primal-dual interior-point method based on a new kernel function with linear growth rate. In: Proc. Industrial Optimization Symposium and Optimization Day 2002.
MR 1972215
[4] Bai, Y. Q., Ghami, M. El, Roos, C.:
A comparative study of kernel functions for primal-dual interior-point algorithms in linear optimization. SIAM J. Optim. 15 (2004), 101-128.
DOI |
MR 2112978
[5] Bouafia, M., Benterki, D., Yassine, A.:
An efficient primal-dual interior point method for linear programming problems based on a new kernel function with a trigonometric barrier term. J. Optim. Theory. Appl. 170 (2016), 528-545.
DOI |
MR 3527709
[6] Boudjellal, N., Roumili, H., Benterki, D.:
A primal-dual interior point algorithm for convex quadratic programming based on a new parametric kernel function. Optimization 70 (2020) 8, 1-22.
DOI |
MR 4293597
[7] Bouhenache, Y., Chikouche, W., Touil, I., Fathi-Hafshejani, S.:
Complexity analysis of primal-dual interior-point methods for convex quadratic programming based on a new twice parameterized kernel function. J. Math. Model. 12 (2024), 2, 247-265.
MR 4777340
[8] Choi, B. K., Lee, G. M.:
On complexity analysis of the primal-dual interior-point method for semidefinite optimization problem based on a new proximity function. Nonlinear Anal. 71 (2009), 2628-2640.
DOI |
MR 2672034
[9] Ghami, M. El, Guennoun, Z. A., Bouali, S., Steihaug, T.:
Interior point methods for linear optimization based on a kernel function with a trigonometric barrier term. J. Comput. Appl. Math. 236 (2012), 3613-3623.
DOI |
MR 2923494
[10] Guerdouh, S., Chikouche, W., Touil, I.:
An efficient primal-dual interior point algorithm for linear optimization problems based on a novel parameterized kernel function with a hyperbolic barrier term. 2021. halshs-03228790.
MR 4601347
[11] Fathi-Hafshejani, S., Mansouri, H., Peyghami, M. R., Chen, S.:
Primal-dual interior-point method for linear optimization based on a kernel function with trigonometric growth term. Optimization (2018), 1029-4945.
DOI |
MR 3882993
[12] Fathi-Hafshejani, S., Moaberfard, Z.:
An interior-point algorithm for linearly constrained convex optimization based on kernel function and application in non-negative matrix factorization. Optim. Engrg. 21 (2020), 1019-1051.
DOI |
MR 4125721
[13] Karmarkar, N. K.:
A new polynomial-time algorithm for linear programming. In: Proc. 16th Annual ACM Symposium on Theory of Computing 4 (1984), 373-395.
MR 0779900
[14] Nesterov, R. E., Nemirovskii, A. S.:
Interior-Point Ploynomial Methods in Convex Programming. Society for Industrial and Applied Mathematics 1994.
MR 1258086
[15] Peng, J., Roos, C., Terlaky, T.:
Self-regular functions and new search directions for linear and semidefinite optimization. Math. Program. 93 (2002), 129-171.
DOI |
MR 1912271 |
Zbl 1007.90037
[16] Peyghami, M. R., Fathi-Hafshejani, S., Chen, S.:
A primal-dual interior-point method for semidefinite optimization based on a class of trigonometric barrier functions. Oper. Res. Lett. 44 (2016), 319-323.
DOI |
MR 3503107
[17] Roos, C., Terlaky, T., Vial, J. Ph.:
Theory and algorithms for linear optimization. In: An interior point Approach. John Wiley and Sons, Chichester 1997.
MR 1450094
[18] Touil, I., Benterki, D., Yassine, A.:
A feasible primal-dual interior point method for linear semidefinite programming. J. Comput. Appl. Math. 312 (2017), 216-230.
DOI |
MR 3557876
[19] Touil, I., Benterki, D.: A primal-dual interior-point method for the semidefinite programming problem based on a new kernel function. J. Nonlinear Funct. Anal. (2019), Article ID 25.
[20] Touil, I., Chikouche, W.:
Primal-dual interior point methods for semidefinite programming based on a new type of kernel functions. Filomat. 34 (2020), 12, 3957-3969.
DOI |
MR 4290825
[21] Touil, I., Chikouche, W.:
Polynomial-time algorithm for linear programming based on a kernel function with hyperbolic-logarithmic barrier term. PJM 11 (2022), 127-135.
MR 4447022
[22] Touil, I., Chikouche, W.:
Novel kernel function with a hyperbolic barrier term to primal-dual interior point algorithm for SDP problems. Acta Math. Sinica (Engl. Ser.) 38 (2022), 1, 44-67.
DOI |
MR 4375772
[23] Wang, G. Q., Bai, Y. Q., Roos, C.:
Primal-dual interior-point algorithms for semidefinite optimization based on a simple kernel function. J. Math. Model. Algorithms Oper. Res. 4 (2005), 4, 409-433.
DOI |
MR 2231552