[2] Babuška, I., Guo, B. Q.:
Regularity of the solution of elliptic problems with piecewise analytic data. I. Boundary value problems for linear elliptic equations of second order. SIAM J. Math. Anal. 19 (1988), 172-203.
DOI 10.1137/0519014 |
MR 0924554 |
Zbl 0647.35021
[4] Babuška, I., Guo, B. Q.:
Regularity of the solution of elliptic problems with piecewise analytic data. II. The trace spaces and application to the boundary value problems with nonhomogeneous boundary conditions. SIAM J. Math. Anal. 20 (1989), 763-781.
DOI 10.1137/0520054 |
MR 1000721 |
Zbl 0706.35028
[7] Banjai, L., Melenk, J. M., Schwab, C.:
$hp$-FEM for reaction-diffusion equations. II. Robust exponential convergence for multiple length scales in corner domains. IMA J. Numer. Anal. 43 (2023), 3282-3325.
DOI 10.1093/imanum/drac070 |
MR 4673336 |
Zbl 07800835
[18] Faustmann, M., Marcati, C., Melenk, J. M., Schwab, C.:
Exponential convergence of $hp$-FEM for the integral fractional Laplacian in polygons. SIAM J. Numer. Anal. 61 (2023), 2601-2622.
DOI 10.1137/22M152493X |
MR 4667264 |
Zbl 1533.65224
[21] Guo, B.:
The $h$-$p$ Version of Finite Element Method in Two Dimensions. Mathematical Theory and Computational Experience: Ph.D. Thesis. University of Maryland, College Park (1985).
MR 2634330
[23] Guo, B., Babuška, I.:
Regularity of the solutions for elliptic problems on nonsmooth domains in $\Bbb R^3$. I. Countably normed spaces on polyhedral domains. Proc. R. Soc. Edinb., Sect. A 127 (1997), 77-126.
DOI 10.1017/S0308210500023520 |
MR 1433086 |
Zbl 0874.35019
[24] Guo, B., Babuška, I.:
Regularity of the solutions for elliptic problems on nonsmooth domains in $\Bbb R^3$. II. Regularity in neighbourhoods of edges. Proc. R. Soc. Edinb., Sect. A 127 (1997), 517-545.
DOI 10.1017/S0308210500029899 |
MR 1453280 |
Zbl 0884.35022
[28] He, Y., Marcati, C., Schwab, C.:
Analytic regularity of solutions to the Navier-Stokes equations with mixed boundary conditions in polygons. SIAM J. Math. Anal. 56 (2024), 2488-2520.
DOI 10.1137/22M1527428 |
MR 4719953 |
Zbl 07849793
[33] Longo, M., Opschoor, J. A. A., Disch, N., Schwab, C., Zech, J.:
De Rham compatible deep neural network FEM. Neural Netw. 165 (2023), 721-739.
DOI 10.1016/j.neunet.2023.06.008 |
Zbl 1532.65083
[34] Maday, Y., Marcati, C.:
Regularity and $hp$ discontinuous Galerkin finite element approximation of linear elliptic eigenvalue problems with singular potentials. Math. Models Methods Appl. Sci. 29 (2019), 1585-1617.
DOI 10.1142/S0218202519500295 |
MR 3986800 |
Zbl 1431.65209
[39] Opschoor, J. A. A.:
Constructive Deep Neural Network Approximations of Weighted Analytic Solutions to Partial Differential Equations in Polygons: Ph.D. Thesis. ETH, Zürich (2023).
DOI 10.3929/ethz-b-000614671
[46] Schwab, C.:
$p$- and $hp$-Finite Element Methods: Theory and Applications in Solid and Fluid Mechanics. Numerical Mathematics and Scientific Computation. Clarendon Press, Oxford (1998).
MR 1695813 |
Zbl 0910.73003