Previous |  Up |  Next

Article

Title: $L$-limited-like properties on Banach spaces (English)
Author: Ghenciu, Ioana
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 64
Issue: 4
Year: 2023
Pages: 439-457
Summary lang: English
.
Category: math
.
Summary: We study weakly precompact sets and operators. We show that an operator is weakly precompact if and only if its adjoint is pseudo weakly compact. We study Banach spaces with the $p$-$L$-limited$^*$ and the $p$-(SR$^*$) properties and characterize these classes of Banach spaces in terms of $p$-$L$-limited$^*$ and $p$-Right$^*$ subsets. The $p$-$L$-limited$^*$ property is studied in some spaces of operators. (English)
Keyword: $p$-Right$^*$ set
Keyword: Right$^*$ set
Keyword: DP $p$-convergent operator
Keyword: weakly precompact operator
Keyword: limited $p$-convergent operator
MSC: 46B20
MSC: 46B25
MSC: 46B28
DOI: 10.14712/1213-7243.2024.013
.
Date available: 2024-11-05T11:47:43Z
Last updated: 2024-11-05
Stable URL: http://hdl.handle.net/10338.dmlcz/152625
.
Reference: [1] Alikhani M.: Sequentially right-like properties on Banach spaces.Filomat 33 (2019), no. 14, 4461–4474. MR 4049162, 10.2298/FIL1914461A
Reference: [2] Andrews K. T.: Dunford–Pettis sets in the space of Bochner integrable functions.Math. Ann. 241 (1979), no. 1, 35–41. MR 0531148, 10.1007/BF01406706
Reference: [3] Bator E., Lewis P., Ochoa J.: Evaluation maps, restriction maps, and compactness.Colloq. Math. 78 (1998), no. 1, 1–17. Zbl 0948.46008, MR 1658115, 10.4064/cm-78-1-1-17
Reference: [4] Bourgain J., Delbaen F.: A class of special $\mathcal{L}_\infty$ spaces.Acta Math. 145 (1980), no. 3–4, 155–176. MR 0590288, 10.1007/BF02414188
Reference: [5] Bourgain J., Diestel J.: Limited operators and strict cosingularity.Math. Nachr. 119 (1984), 55–58. Zbl 0601.47019, MR 0774176, 10.1002/mana.19841190105
Reference: [6] Carrión H., Galindo P., Lourenço M.: A stronger Dunford–Pettis property.Studia Math. 184 (2008), no. 3, 205–216. MR 2369139, 10.4064/sm184-3-1
Reference: [7] Castillo J. M. F., Sanchez F.: Dunford–Pettis like properties of continuous vector function spaces.Rev. Mat. Univ. Complut. Madrid 6 (1993), no. 1, 43–59. MR 1245024
Reference: [8] Cembranos P.: $C(K,E)$ contains a complemented copy of $c_0$.Proc. Amer. Math. Soc. 91 (1984), no. 4, 556–558. MR 0746089
Reference: [9] Cilia R., Emmanuele G.: Some isomorphic properties in $K(X, Y)$ and in projective tensor products.Colloq. Math. 146 (2017), no. 2, 239–252. MR 3622375, 10.4064/cm6184-12-2015
Reference: [10] Dehghani M., Dehghani M. B., Moshtaghioun M. S.: Sequentially right Banach spaces of order $p$.Comment. Math. Univ. Carolin. 61 (2020), no. 1, 51–67. MR 4093429
Reference: [11] Diestel J.: A survey of results related to the Dunford–Pettis property.Proc. of Conf. on Integration, Topology, and Geometry in Linear Spaces, Univ. North Carolina, Chapel Hill, N.C., 1979, Contemp. Math., 2, Amer. Math. Soc., Providence, 1980, pages 15–60. MR 0621850
Reference: [12] Diestel J., Jarchow H., Tonge A.: Absolutely Summing Operators.Cambridge Studies in Advanced Mathematics, 43, Cambridge University Press, Cambridge, 1995. Zbl 1139.47021, MR 1342297
Reference: [13] Drewnowski L., Emmanuele G.: On Banach spaces with the Gel'fand–Phillips property. II.Rend. Circ. Mat. Palermo (2) 38 (1989), no. 3, 377–391. MR 1053378, 10.1007/BF02850021
Reference: [14] Emmanuele G.: Banach spaces in which Dunford–Pettis sets are relatively compact.Arch. Math. (Basel) 58 (1992), no. 5, 477–485. MR 1156580, 10.1007/BF01190118
Reference: [15] Fourie J. H., Zeekoei E. D.: $DP^*$-Properties of order $p$ on Banach spaces.Quaest. Math. 37 (2014), no. 3, 349–358. MR 3285289, 10.2989/16073606.2013.779611
Reference: [16] Fourie J. H., Zeekoei E. D.: On weak-star $p$-convergent operators.Quaest. Math. 40 (2017), no. 5, 563–579. MR 3691468, 10.2989/16073606.2017.1301591
Reference: [17] Ghenciu I.: Weak precompactness and property $(V^*)$ in spaces of compact operators.Colloq. Math. 138 (2015), no. 2, 255–269. MR 3312111, 10.4064/cm138-2-10
Reference: [18] Ghenciu I.: $L$-sets and property $(SR^*)$ in spaces of compact operators.Monatsh. Math. 181 (2016), no. 3, 609–628. MR 3552802, 10.1007/s00605-016-0884-2
Reference: [19] Ghenciu I.: A note on some isomorphic properties in projective tensor products.Extracta Math. 32 (2017), no. 1, 1–24. MR 3726522
Reference: [20] Ghenciu I.: The $p$-Gelfand–Phillips property in spaces of operators and Dunford–Pettis like sets.Acta Math. Hungar. 155 (2018), no. 2, 439–457. MR 3831309, 10.1007/s10474-018-0836-5
Reference: [21] Ghenciu I.: Some classes of Banach spaces and complemented subspaces of operators.Adv. Oper. Theory 4 (2019), no. 2, 369–387. MR 3883141, 10.15352/aot.1802-1318
Reference: [22] Ghenciu I.: A note on $p$-limited sets in dual Banach spaces.Monatsh. Math. 200 (2023), no. 2, 255–270. MR 4544297, 10.1007/s00605-022-01738-6
Reference: [23] Ghenciu I., Lewis P.: Almost weakly compact operators.Bull. Pol. Acad. Sci. Math. 54 (2006), no. 3–4, 237–256. Zbl 1118.46016, MR 2287199, 10.4064/ba54-3-6
Reference: [24] Ghenciu I., Lewis P.: Completely continuous operators.Colloq. Math. 126 (2012), no. 2, 231–256. Zbl 1256.46009, MR 2924252, 10.4064/cm126-2-7
Reference: [25] Ghenciu I., Popescu R.: A note on some classes of operators on C(K,X).Quaest. Math. 47 (2024), no. 1, 21–42. MR 4713267, 10.2989/16073606.2023.2182243
Reference: [26] Kačena M.: On sequentially right Banach spaces.Extracta Math. 26 (2011), no. 1, 1–27. MR 2908388
Reference: [27] Karn A. K., Sinha D. P.: An operator summability of sequences in Banach spaces.Glasg. Math. J. 56 (2014), no. 2, 427–437. MR 3187909, 10.1017/S0017089513000360
Reference: [28] Li L., Chen D., Chavez-Dominguez J. A.: Pełczyński's property $(V^*)$ of order $p$ and its quantification.Math. Nachr. 291 (2018), no. 2–3, 420–442. MR 3767145, 10.1002/mana.201600335
Reference: [29] Pełczyński A.: Banach spaces on which every unconditionally converging operator is weakly compact.Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10 (1962), 641–648. Zbl 0107.32504, MR 0149295
Reference: [30] Peralta A. M., Villanueva I., Wright J. D. M., Ylinen K.: Topological characterization of weakly compact operators.J. Math. Anal. Appl. 325 (2007), no. 2, 968–974. MR 2270063, 10.1016/j.jmaa.2006.02.066
Reference: [31] Rosenthal H. P.: Point-wise compact subsets of the first Baire class.Amer. J. Math. 99 (1977), no. 2, 362–378. MR 0438113, 10.2307/2373824
Reference: [32] Salimi M., Moshtaghiun S. M.: A new class of Banach spaces and its relation with some geometric properties of Banach spaces.Abstr. Appl. Anal. (2012), Art. ID 212957, 8 pages. MR 2910729
Reference: [33] Wojtaszczyk P.: Banach Spaces for Analysts.Cambridge Studies in Advanced Mathematics, 25, Cambridge University Press, Cambridge, 1991. MR 1144277
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo