Previous |  Up |  Next

Article

Title: A Kalmár-style completeness proof for the logics of the hierarchy ${\mathbb{I}}^n {\mathbb{P}}^k$ (English)
Author: Fernández, Víctor
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 64
Issue: 4
Year: 2023
Pages: 485-509
Summary lang: English
.
Category: math
.
Summary: The logics of the family ${\mathbb{I}}^n {\mathbb{P}}^k$:=$\{{ I^n P^k}\}_{(n,k) \in \omega^2}$ are formally defined by means of finite matrices, as a simultaneous generalization of the weakly-intuitionistic logic $I^1$ and of the paraconsistent logic $P^1$. It is proved that this family can be naturally ordered, and it is shown a sound and complete axiomatics for each logic of the form $I^n P^k$. The involved completeness proof showed here is obtained by means of a generalization of the well-known Kalmár's method, usually applied for many-valued logics. (English)
Keyword: mathematical logic
Keyword: Kalmár's completeness proof
Keyword: many-valued logic
MSC: 03B50
MSC: 03B53
DOI: 10.14712/1213-7243.2024.009
.
Date available: 2024-11-05T11:52:13Z
Last updated: 2024-11-05
Stable URL: http://hdl.handle.net/10338.dmlcz/152624
.
Reference: [1] Blok W. J., Pigozzi D.: Algebraizable logics.Mem. Amer. Math. Soc. 77 (1989), no. 396, vi+78 pages. MR 0973361
Reference: [2] Carnielli W. A., Coniglio M. E., Marcos J.: Logics of formal inconsistency.in Handbook of Philosophical Logic, Springer, London, 2007, pages 1–93.
Reference: [3] Carnielli W. A., Marcos J.: A taxonomy of $C$-systems.in Paraconsistency: The Logical Way to the Inconsistent, Proc. of the 2nd World Congress on Paraconsistency, São Sebstiãno, 2000, Lecture Notes in Pure and Appl. Math., 228, Marcel Dekker, New York, 2002, pages 1–94. MR 2008227
Reference: [4] Ciuciura J.: A lattice of the paracomplete calculi.Log. Issled. 26 (2020), no. 1, 110–123. MR 4153478
Reference: [5] Ciuciura J.: Sette's calculus $P^1$ and some hierarchies of paraconsistent systems.J. of Logic Comput. 30 (2020), no. 5, 1109–1124. MR 4122505, 10.1093/logcom/exaa030
Reference: [6] da Costa N. C. A.: On the theory of inconsistent formal systems.Notre Dame J. Formal Logic 15 (1974), 497–510. MR 0354361
Reference: [7] da Costa N. C. A.: Inconsistent Formal Systems.Habilitation Thesis, Universidade Federal do Paraná, Curitiba, Brazil, 1993 (Portuguese). MR 1258510
Reference: [8] Fernández V.: Society Semantics for $n$-valued Logics.Master's Thesis, UNICAMP, Brazil, 2001 (Portuguese).
Reference: [9] Fernández V.: Fibring of Logics in the Leibniz Hierarchy.Ph.D. Thesis, UNICAMP, Brazil, 2005 (Portuguese).
Reference: [10] Fernández V. L., Coniglio M. E.: Combining valuations with society semantics.Journal of Applied Non-Classical Logics 13 (2003), no. 1, 21–46. 10.3166/jancl.13.21-46
Reference: [11] Henkin L.: Fragments of the propositional calculus.J. Symbolic Logic 14 (1949), 42–48. MR 0033780, 10.2307/2268976
Reference: [12] L'abbé M.: On the independence of Henkin's axioms for the fragments of the propositional calculus.J. Symbolic Logic 16 (1951), 43–45. MR 0040235, 10.2307/2268664
Reference: [13] Lewin R. A., Mikenberg I. F., Schwarze M. G.: Algebraization of paraconsistent logic $P^1$.J. Non-Classical Logic 7 (1990), no. 1–2, 79–88. MR 1209367
Reference: [14] Lewin R. A., Mikenberg I. F, Schwarze M. G.: $P^1$ algebras.Studia Logica 53 (1994), no. 1, 21–28. MR 1271128
Reference: [15] Lopes dos Santos L.: Constructive completeness proofs for positive propositional calculi.in Proc. of the Third Brazilian Conf. on Mathematical Logic, Inst. Math., Fed. Univ. Pernambuco, Recife, 1979, (A. Arruda, N. da Costa, A. Sette eds.), Soc. Brasil. Lógica, São Paulo, 1980, pages 199–209. MR 0603668
Reference: [16] Mendelson E.: Introduction to Mathematical Logic.Chapman and Hall, London, 1997. MR 1630547
Reference: [17] Olvera Badillo A.: Revisiting Kalmár completeness metaproof.Proc. of the 6th Latin American Workshop on Logic/Languages, Algorithms and New Methods of Reasoning Puebla, Mexico, 2010, vol. 677 of CEUR Workshop Proceedings, 2010, pages 99–106.
Reference: [18] Pynko A. P.: Algebraic study of Sette's maximal paraconsistent logic.Studia Logica 54 (1995), no. 1, 89–128. MR 1317076, 10.1007/BF01058534
Reference: [19] Ramos F. M, Fernández V. L.: Twist-structures semantics for the logics of the hierarchy $I^n P^k$.J. Appl. Non-Classical Logics 19 (2009), no. 2, 183–209. MR 2569575, 10.3166/jancl.19.183-209
Reference: [20] Sette A. M.: On the propositional calculus $P^1$.Math. Japon. 18 (1973), 173–180. MR 0373820
Reference: [21] Sette A.-M., Carnielli W. A.: Maximal weakly-intuitionistic logics.Studia Logica 55 (1995), no. 1, 181–203. MR 1348842, 10.1007/BF01053037
Reference: [22] Wójcicki R.: Theory of Logical Calculi.Basic Theory of Consequence Operations, Synthese Library, 199, Kluwer Academic Publishers Group, Dordrecht, 1988. MR 1009788
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo