Previous |  Up |  Next

Article

Title: On a probabilistic problem on finite semigroups (English)
Author: Nagy, Attila
Author: Tóth, Csaba
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 64
Issue: 4
Year: 2023
Pages: 395-410
Summary lang: English
.
Category: math
.
Summary: We deal with the following problem: how does the structure of a finite semigroup $S$ depend on the probability that two elements selected at random from $S$, with replacement, define the same inner right translation of $S$. We solve a subcase of this problem. As the main result of the paper, we show how to construct not necessarily finite medial semigroups in which the index of the kernel of the right regular representation equals two. (English)
Keyword: semigroup
Keyword: regular representation of semigroups
Keyword: medial semigroup
MSC: 20M10
MSC: 20M15
DOI: 10.14712/1213-7243.2024.006
.
Date available: 2024-11-05T11:42:59Z
Last updated: 2024-11-05
Stable URL: http://hdl.handle.net/10338.dmlcz/152622
.
Reference: [1] Chrislock J. L.: On medial semigroups.J. Algebra 12 (1969), no. 1, 1–9. Zbl 0187.29102, MR 0237685, 10.1016/0021-8693(69)90013-1
Reference: [2] Clifford A. H., Preston G. B.: The Algebraic Theory of Semigroups. Vol. I..Mathematical Surveys, 7, American Mathematical Society, Providence, 1961. MR 0132791
Reference: [3] Dixon J. D.: The probability of generating the symmetric group.Math. Z. 110 (1969), 199–205. MR 0251758, 10.1007/BF01110210
Reference: [4] Dixon J. D., Pyber L., Seress Á., Shalev A.: Residual properties of free groups and probabilistic methods.J. Reine Angew. Math. 556 (2003), 159–172. MR 1971144
Reference: [5] Eberhard S., Virchow S.-C.: The Probability of Generating the Symmetric Group.Combinatorica 39 (2019), no. 2, 273–288. MR 3962902, 10.1007/s00493-017-3629-5
Reference: [6] Erdös P., Rényi A.: Probabilistic Methods in Group Theory.J. Analyse Math. 14 (1965), 127–138. MR 0202831, 10.1007/BF02806383
Reference: [7] Gigoń R. S.: Nilpotent elements in medial semigroups.Math. Slovaca 69 (2019), no. 5, 1033–1036. MR 4017388, 10.1515/ms-2017-0287
Reference: [8] Gustafson W. H.: What is the probability that two group elements commute?.Amer. Math. Monthly 80 (1973), 1031–1034. MR 0327901, 10.1080/00029890.1973.11993437
Reference: [9] Halili R. R., Azemi M.: Topological medial semigroups.International Journal of Scientific and Innovative Mathematical Research (IJSIMR) 8 (2020), no. 10, 18–22.
Reference: [10] Kehayopulu N., Tsingelis M.: Ordered semigroups which are both right commutative and right cancellative.Semigroup Forum 84 (2012), no. 3, 562–568. MR 2917192, 10.1007/s00233-011-9346-2
Reference: [11] Liebeck M. W., Shalev A.: The probability of generating a finite simple group.Geom. Dedicata 56 (1995), no. 1, 103–113. MR 1338320, 10.1007/BF01263616
Reference: [12] Liebeck M. W., Shalev A.: Classical groups, probabilistic methods, and the $(2, 3)$-generation problem.Ann. of Math. (2) 144 (1996), 77–125. MR 1405944
Reference: [13] Liebeck M. W., Shalev A.: Simple groups, probabilistic methods, and a conjecture of Kantor and Lubotzky.J. Algebra 184 (1996), no. 1, 31–57. MR 1402569, 10.1006/jabr.1996.0248
Reference: [14] Nagy A.: Subdirectly irreducible right commutative semigroups.Semigroup Forum 46 (1993), 187–198. MR 1200213, 10.1007/BF02573565
Reference: [15] Nagy A.: Right commutative $\Delta$-semigroups.Acta Sci. Math. (Szeged) 66 (2000), no. 1–2, 33–45. MR 1768852
Reference: [16] Nagy A.: Special Classes of Semigroups.Advances in Mathematics (Dordrecht), 1, Kluwer Academic Publishers, Dordrecht, 2001. MR 1777265
Reference: [17] Nagy A.: A supplement to my paper “Right commutative $\Delta$-semigroups".Acta Scie. Math. (Szeged) 71 (2005), no. 1–2, 35–36. MR 2160353
Reference: [18] Nagy A.: Medial permutable semigroups of the first kind.Semigroup Forum 76 (2008), no. 2, 297–308. MR 2377591, 10.1007/s00233-007-9027-3
Reference: [19] Nagy A.: A construction of left equalizer simple medial semigroups.Period. Math. Hungar. 86 (2023), no. 1, 37–42. MR 4554111, 10.1007/s10998-022-00454-w
Reference: [20] Nagy A., Tóth C.: On the probability that two elements of a finite semigroup have the same right matrix.Comment. Math. Univ. Carolin. 63 (2022), no. 1, 21–31. MR 4445735
Reference: [21] Pálfy P. P., Szalay M.: On a problem of P. Turán concerning Sylow subgroups.Studies in Pure Mathematics, Birkh\H auser, Basel, 1983, pages 531–542. MR 0820249
Reference: [22] Petrich M.: Lectures in Semigroups.John Wiley and Sons, London, 1977. MR 0466270
Reference: [23] Pyber L., Shalev A.: Residual properties of groups and probabilistic methods.C. R. Acad. Sci. Paris Sér. I Math. 333 (2001), no. 4, 275–278. MR 1854764, 10.1016/S0764-4442(01)02044-4
Reference: [24] Strecker R.: Construction of medial semigroups.Comment. Math. Univ. Carolin. 25 (1984), no. 4, 689–697. MR 0782018
Reference: [25] Tamura N.-S., Nordahl T.: Finitely generated left commutative semigroups are residually finite.Semigroup Forum 28 (1984), no. 1–3, 347–-354. MR 0729674, 10.1007/BF02572495
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo