On zero-symmetric nearrings with identity whose additive groups are simple.
(English).Czechoslovak Mathematical Journal,
vol. 74
(2024),
issue 3,
pp. 869-880
Keywords: infinite simple group; HNN extension; nearring with identity
Summary: We investigate conditions on an infinite simple group in order to construct a zero-symmetric nearring with identity on it. Using the Higman-Neumann-Neumann extensions and Clay's characterization, we obtain zero-symmetric nearrings with identity with the additive groups infinite simple groups. We also show that no zero-symmetric nearring with identity can have the symmetric group ${\rm Sym}(\mathbb {N})$ as its additive group.
[5] Dixon, J. D., Neumann, P. M., Thomas, S.: Subgroups of small index in infinite symmetric groups. Bull. Lond. Math. Soc. 18 (1986), 580-586. DOI 10.1112/blms/18.6.580 | MR 0859950 | Zbl 0607.20003
[10] Ol'shanskii, A. Y.: An infinite simple Noetherian group without torsion. Math. USSR, Izv. 15 (1980), 531-588 Translation from Izv. Akad. Nauk SSSR, Ser. Mat. 43 1979 1328-1393. DOI 10.1070/IM1980v015n03ABEH001268 | MR 0567039 | Zbl 0453.20024
[11] Ol'shanskii, A. Y.: Groups of bounded period with subgroups of prime order. Algebra Logic 21 (1983), 369-418 Translation from Algebra Logika 21 1982 553-618. DOI 10.1007/BF02027230 | MR 0721048 | Zbl 0524.20024
[14] Schreier, J., Ulam, S.: Über die Permutationsgruppe der natürlichen Zahlenfolge. Stud. Math. 4 (1933), 134-141 German. DOI 10.4064/sm-4-1-134-141 | Zbl 0008.20003
[15] Schreier, J., Ulam, S.: Über die Automorphismen der Permutationsgruppe der natürlichen Zahlenfolge. Fundam. Math. 28 (1937), 258-260 German. DOI 10.4064/fm-28-1-258-260 | Zbl 0016.20301
[16] Scott, E. A.: A tour around finitely presented infinite simple groups. Algorithms and Classification in Combinatorial Group Theory Springer, New York (1992), 83-119. DOI 10.1007/978-1-4613-9730-4_4 | MR 1230630 | Zbl 0753.20008
[17] Scott, W. R.: Group Theory. Dover, New York 1987 \99999MR99999 0896269 . MR 0896269 | Zbl 0641.20001