Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
infinite simple group; HNN extension; nearring with identity
Summary:
We investigate conditions on an infinite simple group in order to construct a zero-symmetric nearring with identity on it. Using the Higman-Neumann-Neumann extensions and Clay's characterization, we obtain zero-symmetric nearrings with identity with the additive groups infinite simple groups. We also show that no zero-symmetric nearring with identity can have the symmetric group ${\rm Sym}(\mathbb {N})$ as its additive group.
References:
[1] Baumslag, G.: Topics in Combinatorial Group Theory. Lectures in Mathematics, ETH Zürich. Birkhäuser, Basel (1993). DOI 10.1007/978-3-0348-8587-4 | MR 1243634 | Zbl 0797.20001
[2] Clay, J. R.: The near-rings on groups of low order. Math. Z. 104 (1968), 364-371. DOI 10.1007/BF01110428 | MR 0224659 | Zbl 0153.35704
[3] J. R. Clay, J. J. Malone, Jr.: The near-rings with identities on certain finite groups. Math. Scand. 19 (1966), 146-150. DOI 10.7146/math.scand.a-10803 | MR 0207774 | Zbl 0149.02701
[4] Dickson, L. E.: Theory of linear groups in an arbitrary field. Trans. Am. Math. Soc. 2 (1901), 363-394 \99999JFM99999 32.0131.03. DOI 10.1090/S0002-9947-1901-1500573-3 | MR 1500573
[5] Dixon, J. D., Neumann, P. M., Thomas, S.: Subgroups of small index in infinite symmetric groups. Bull. Lond. Math. Soc. 18 (1986), 580-586. DOI 10.1112/blms/18.6.580 | MR 0859950 | Zbl 0607.20003
[6] Hamilton, A. G.: Numbers, Sets and Axioms: The Apparatus of Mathematics. Cambridge University Press, Cambridge (1982). DOI 10.1017/cbo9781139171618 | MR 0691672 | Zbl 0497.04001
[7] Higman, G., Neumann, B. H., Neumann, H.: Embedding theorems for groups. J. Lond. Math. Soc. 24 (1949), 247-254. DOI 10.1112/jlms/s1-24.4.247 | MR 0032641 | Zbl 0034.30101
[8] Kaarli, K.: On ideal transitivity in near-rings. Contributions to General Algebra 8 Höder-Pichler-Tempsky, Vienna (1992), 81-89. MR 1281831 | Zbl 0790.16036
[9] Lyndon, R. C., Shupp, P. E.: Combinatorial Group Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete 89. Springer, Berlin (1977). DOI 10.1007/978-3-642-61896-3 | MR 0577064 | Zbl 0368.20023
[10] Ol'shanskii, A. Y.: An infinite simple Noetherian group without torsion. Math. USSR, Izv. 15 (1980), 531-588 Translation from Izv. Akad. Nauk SSSR, Ser. Mat. 43 1979 1328-1393. DOI 10.1070/IM1980v015n03ABEH001268 | MR 0567039 | Zbl 0453.20024
[11] Ol'shanskii, A. Y.: Groups of bounded period with subgroups of prime order. Algebra Logic 21 (1983), 369-418 Translation from Algebra Logika 21 1982 553-618. DOI 10.1007/BF02027230 | MR 0721048 | Zbl 0524.20024
[12] Pilz, G.: Near-Rings: The Theory and Its Applications. North-Holland Mathematics Studies 23. North-Holland, Amsterdam (1977). DOI 10.1016/s0304-0208(08)x7135-x | MR 0469981 | Zbl 0349.16015
[13] Rotman, J. J.: An Introduction to the Theory of Groups. Graduate Texts in Mathematics 148. Springer, Berlin (1995). DOI 10.1007/978-1-4612-4176-8 | MR 1307623 | Zbl 0810.20001
[14] Schreier, J., Ulam, S.: Über die Permutationsgruppe der natürlichen Zahlenfolge. Stud. Math. 4 (1933), 134-141 German. DOI 10.4064/sm-4-1-134-141 | Zbl 0008.20003
[15] Schreier, J., Ulam, S.: Über die Automorphismen der Permutationsgruppe der natürlichen Zahlenfolge. Fundam. Math. 28 (1937), 258-260 German. DOI 10.4064/fm-28-1-258-260 | Zbl 0016.20301
[16] Scott, E. A.: A tour around finitely presented infinite simple groups. Algorithms and Classification in Combinatorial Group Theory Springer, New York (1992), 83-119. DOI 10.1007/978-1-4613-9730-4_4 | MR 1230630 | Zbl 0753.20008
[17] Scott, W. R.: Group Theory. Dover, New York 1987 \99999MR99999 0896269 . MR 0896269 | Zbl 0641.20001
Partner of
EuDML logo